精英家教网 > 高中数学 > 题目详情

(本小题满分12分)如图,四棱锥P-ABCD的底面ABCD是直角梯形,∠DAB=∠ABC=90o,PA⊥底面ABCD,PA=AB=AD=2,BC=1,E为PD的中点.

(1) 求证:CE∥平面PAB;

(2) 求PA与平面ACE所成角的大小;

(3) 求二面角E-AC-D的大小.

 

【答案】

(1) 取PA的中点F,连结FE、FB,则FE∥BC,且FE=AD=BC,∴BCEF是平行四边形,∴CE∥BF,而BFÌ平面PAB,∴CE∥平面PAB.(2) arcsin(3) arccos

【解析】

试题分析:(1)证明:取PA的中点F,连结FE、FB,则

FE∥BC,且FE=AD=BC,∴BCEF是平行四边形,

∴CE∥BF,而BFÌ平面PAB,∴CE∥平面PAB.

(2) 解:取 AD的中点G,连结EG,则EG∥AP,问题转为求EG与平面ACE所成角的大小.又设点G到平面ACE的距离为GH,H为垂足,连结EH,则∠GEH为直线EG与平面ACE所成的角.现用等体积法来求GH.

∵VEAGCS△AGC·EG=

又AE=,AC=CE=,易求得S△AEC

∴VGAEC´´GH=VEAGC,∴GH=

在Rt△EHG中,sin∠GEH=,即PA与平面ACE所成的角为arcsin

(3) 设二面角E-AC-D的大小为a.

由面积射影定理得cosa=,∴a=arccos,即二面角E-AC-D的大小为arccos

考点:线面平行的判定及线面角二面角的求解

点评:本题还可利用空间向量求解,利用AB,AD,AP两两垂直,以A为原点建立坐标系,根据线段长度写出各点坐标,带入相应的公式计算求角

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案