精英家教网 > 高中数学 > 题目详情
已知命题P:函数f(x)=x2+mx+1有两个不相同的零点且为负数;命题q:关于x的方程x2-2(m-2)x+m=0没有实数根.
(Ⅰ)求实数m的取值范围,使命题p为真命题;
(Ⅱ)若“¬p或q”为真命题,“¬p且q”为假命题,求实数m值的集合.
分析:(Ⅰ)利用命题p为真命题,利用根与系数之间的关系确定实数m的取值范围.
(Ⅱ)由“¬p或q”为真命题,“¬p且q”为假命题,确定p,q的真假关系.
解答:解:(Ⅰ)若p为真命题,设两个零点为x1,x2,则由利用根与系数之间的关系得
△=m2-4>0
x1+x2=-m<0
x1x2=1>0
,解得m>2.
即实数m的取值范围是m>2.
(Ⅱ)若q为真,则△=4(m-2)2-4m<0,解得1<m<4.
若“¬p或q”为真命题,则¬p,q 至少有一个为真命题.
“¬p且q”为假命题,则¬p,q 至少有一个为假命题,所以¬p,q 一真一假,即p,q有相同的真假性.
当p真q真时,由
m>2
1<m<4
 的2<m<4.
当p假且q假时,由
m≤2
m≤1且m≥4
,解得m≤1.
综上所求m的取值集合为{m|m≤1或2<m<4}.
点评:本题主要考查复合命题的真假关系的应用,要求熟练掌握复合命题与简单命题的真假关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:函数f(x)=(m-2)x为增函数,命题q:“?x0∈R,x02+2mx0+2-m=0”,若“p∨q”为真命题,“p∧q”为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:函数f(x)=x2-2x+
12
a
的图象与x轴有交点,命题q:f(x)=(2a-1)x为R上的减函数,则p是q的(  )条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:函数f(x)=
1-x3
,实数m满足不等式f(m)<2,命题q:实数m使方程2x+m=0(x∈R)有实根.若命题p、q中有且只有一个真命题,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:函数f(x)=(a-1)x+a在(-∞,+∞)上是增函数;命题q:
32-a
>2
.若命题“p或q”为真,“p且q”为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:函数f(x)=(11+a-2a2x是R上单调递增的指数函数.
命题q:关于x的不等式x2-(3a+2)x+a2≥0的解集为R.
若命题“p或q”为真命题,且命题“p且q”为假命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案