精英家教网 > 高中数学 > 题目详情
已知点,动点满足
(1)求动点的轨迹的方程;
(2)在直线上取一点,过点作轨迹的两条切线,切点分别为.问:是否存在点,使得直线//?若存在,求出点的坐标;若不存在,请说明理由.
(1);(2)

试题分析:(1)设动点,利用条件列式化简可得动点轨迹方程C;(2),再求出切点弦的方程,利用其斜率为2,看方程是否有解即可.
试题解析:(1)设,则
,得,化简得.
故动点的轨迹的方程.                          5分
(2)直线方程为,设 ,
过点的切线方程设为,代入,得
,得,所以过点的切线方程为,  7分
同理过点的切线方程为.所以直线MN的方程为,   9分
//,所以,得,而
故点的坐标为.                           10分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆的右顶点为A(2,0),点P(2e,)在椭圆上(e为椭圆的离心率).

(1)求椭圆的方程;
(2)若点B,C(C在第一象限)都在椭圆上,满足,且,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆(a>b>0)的离心率为,右焦点为(,0).
(I)求椭圆的方程;
(Ⅱ)过椭圆的右焦点且斜率为k的直线与椭圆交于点A(xl,y1),B(x2,y2),若, 求斜率k是的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:的离心率为,长轴长为.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线交椭圆C于A、B两点,试问:在y轴正半轴上是否存在一个定点M满足,若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的顶点在坐标原点,焦点为,点是点关于轴的对称点,过点的直线交抛物线于两点。
(Ⅰ)试问在轴上是否存在不同于点的一点,使得轴所在的直线所成的锐角相等,若存在,求出定点的坐标,若不存在说明理由。
(Ⅱ)若的面积为,求向量的夹角;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是椭圆的两个焦点,过的直线交椭圆于两点,若的周长为,则椭圆方程为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

曲线是平面内与定点和定直线的距离的积等于的点的轨迹.给出下列四个结论:
①曲线过坐标原点;
②曲线关于轴对称;
③曲线轴有个交点;
④若点在曲线上,则的最小值为.
其中,所有正确结论的序号是___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的两条渐近线与抛物线的准线分别交于两点,为坐标原点,的面积为,则双曲线的离心率(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是以原点为中心,焦点在轴上的等轴双曲线在第一象限部分,曲线在点P处的切线分别交该双曲线的两条渐近线于两点,则(   )
A.B.
C.D.

查看答案和解析>>

同步练习册答案