精英家教网 > 高中数学 > 题目详情
已知椭圆的中心在坐标原点,焦点在x轴上,椭圆与x轴的交点到两焦点的距离分别是3和1,则椭圆的标准方程是______.
设椭圆的标准方程为
x2
a2
+
y2
b2
=1(a>b>0)

由于椭圆与x轴的交点到两焦点的距离分别是3和1,
a+c=3
a-c=1

解得
a=2
c=1

则b2=a2-c2=3,
则椭圆的标准方程是
x2
4
+
y2
3
=1.
故答案为:
x2
4
+
y2
3
=1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)已知椭圆为常数,且,过点且以向量为方向向量的直线与椭圆交于点,直线交椭圆于点 (为坐标原点).(1)的面积的表达式;(2)若,求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设F1,F2是椭圆E:
x2
a2
+2y2=1
a>
2
2
)的左右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列
(1)求|AB|;
(2)若直线l的斜率为1,求椭圆E的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)过,M(2,
2
),N(
6
,1)两点,求椭圆E的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的中心在原点,长轴的一个顶点坐标为(2,0),离心率为
3
2

(1)求椭圆C的标准方程;
(2)设F1,F2为椭圆C的焦点,P为椭圆上一点,且PF1⊥PF2,求△PF1F2的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

△ABC的周长是8,B(-1,0),C(1,0),则顶点A的轨迹方程是(  )
A.
x2
9
+
y2
8
=1(x≠±3)
B.
x2
9
+
y2
8
=1(x≠0)
C.
x2
4
+
y2
3
=1(y≠0)
D.
x2
3
+
y2
4
=1(y≠0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0),离心率为
2
2
的椭圆经过点(
6
,1).
(1)求该椭圆的标准方程;
(2)过椭圆的一个焦点且互相垂直的直线l1,l2分别与椭圆交于A,B和C,D,是否存在常数λ,使得|AB|+|CD|=λ|AB|•|CD|?若存在,求出实数λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1的焦点坐标为(±1,0),椭圆经过点(1,
2
2

(1)求椭圆方程;
(2)过椭圆左顶点M(-a,0)与直线x=a上点N的直线交椭圆于点P,求
OP
ON
的值.
(3)过右焦点且不与对称轴平行的直线l交椭圆于A、B两点,点Q(2,t),若KQA+KQB=2与l的斜率无关,求t的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设p为椭圆等
x2
m
+
y2
24
=1(m≥32)上的一点,F1,F2是该椭圆的两个焦点,若cos∠F1PF2=
5
13
则△PF1F2的面积是(  )
A.48B.16
C.32D.与m有关的值

查看答案和解析>>

同步练习册答案