精英家教网 > 高中数学 > 题目详情
如果关于x的不等式|x-a|+|x+4|≥1的解集是全体实数,则实数a的取值范围是( )
A.(-∞,3]∪[5,+∞)
B.[-5,-3]
C.[3,5]
D.(-∞,-5]∪[-3,+∞)
【答案】分析:根据绝对值的意义可得|x-a|+|x+4|的最小值为|a+4|,结合所给的条件可得|a+4|≥1 由此求得实数a的取值范围.
解答:解:根据绝对值的意义可得|x-a|+|x+4|表示数轴上的x对应点到a和-4对应点的距离之和,它的最小值为|a+4|,
再由关于x的不等式|x-a|+|x+4|≥1的解集是全体实数,可得|a+4|≥1,∴a+4≥1,或 a+4≤-1.
解得 a≥-3,或a≤-5,
故选D.

点评:本题主要考查绝对值的意义,绝对值不等式的解法,体现了转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

13、如果关于x的不等式|x-2|+|x+3|≥a的解集为R,则a的取值范围是
(-∞,5]

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A(不等式选做题)如果关于x的不等式|x-3|-|x-4|<a的解集不是空集,则实数a的取值范围是
 

B(几何证明选做题)如图,圆O的割线PBA过圆心O,弦CD交AB于点E,且△COE~△PDE,PB=OA=2,则PE的长等于
 

C(极坐标系与参数方程选做题)圆ρ=2COSθ的圆心到直线
x=t
y=
3
t
(t为参数)的距离是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、如果关于x的不等式|x-3|+|x-a|<4的解集不是空集,则参数a的取值范围是
-1<a<7

查看答案和解析>>

科目:高中数学 来源: 题型:

当0≤x≤1时,如果关于x的不等式x|x-a|<2恒成立,那么a的取值范围是
(-1,3)
(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•钟祥市模拟)如果关于x的不等式|x-1|+|x+2|<a的解集不是空集,则实数a的取值范围为
(3,+∞)
(3,+∞)

查看答案和解析>>

同步练习册答案