精英家教网 > 高中数学 > 题目详情
3.下列命题:
①当x>11时,lgx+$\frac{1}{lgx}$的最小值为2;
②对于任意△ABC的内角A、B、C满足:sin2A=sin2B+sin2C-2sinBsinCcosA;
③对于命题p:?x∈R,使得x2+x+1<0.则¬p:?x∈R,均有x2+x+1≥0
④如果函数y=f(x)在某个区间内可导,则f(x)的导数f′(x)>0是函数y=f(x)在该区间上为增函数的充要条件.
其中正确命题的序号为②③.(填上所有正确命题的序号)

分析 对四个命题分别进行判断,即可得出结论.

解答 解:①当x>11时,lgx+$\frac{1}{lgx}$在(11,+∞)上单调递增,无最小值,不正确;
②对于任意△ABC,a2=b2+c2-2bccosA,则由正弦定理,可得内角A、B、C满足:sin2A=sin2B+sin2C-2sinBsinCcosA,正确;
③对于命题p:?x∈R,使得x2+x+1<0,则¬p:?x∈R,均有x2+x+1≥0,正确
④如果函数y=f(x)在某个区间内可导,则f(x)的导数f′(x)>0是函数y=f(x)在该区间上为增函数的充分条件,不正确.
故答案为:②③.

点评 本题考查命题的真假判断,考查学生分析解决问题的能力,知识综合性强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.不等式x2-4x-5<0 的解集为(  )
A.{x|-1<x<5}B.{x|-5<x<1}C.{x|x>5或x<-1}D.{x|x>1或x<-5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.将${({1-\frac{1}{x^2}})^n}$(n∈N+)的展开式中x-4的系数记为an,则$\frac{1}{a_2}+\frac{1}{a_3}+…+\frac{1}{{{a_{2015}}}}$=$\frac{4028}{2015}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.一名大毕业生,准备利用上学期间打工积攒下来的钱去投资甲、乙两个网站,投资金额不超过10万元,有信息表明这两个网店既可能盈利,也可能亏损,盈利率(盈利率=$\frac{盈利额}{投资额}$)和亏损率(亏损率=$\frac{亏损额}{投资额}$),如表所示:
  盈利率亏损率 
 甲网店 60%30% 
 乙网店 40% 15%
该大学生在确保总的亏损额不超过2.4万元的情况下,为了获得最大盈利,应投资甲、乙两个网店各多少万元?最大盈利是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知两个等差数列{an}和{bn}的前n项和分别为Sn和Tn,且对一切正整数n都有$\frac{{S}_{n}}{{T}_{n}}$=$\frac{5n+3}{2n+7}$,则$\frac{{a}_{9}}{{b}_{9}}$的值为(  )
A.$\frac{5}{2}$B.$\frac{88}{41}$C.$\frac{28}{17}$D.$\frac{48}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)的定义域为R,且f′(x)>1-f(x),f(0)=2,则不等式f(x)>1+e-x解集为(  )
A.(-1,+∞)B.(e,+∞)C.(1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{1}{2}$x2+2ax(x>0),g(x)=3alnx+$\frac{5}{2}$a,其中a>0.
(1)当a=1时,求函数h(x)=f(x)-g(x)的单调区间;
(2)是否存在常数a,使两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同?若存在,请求出实数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若y=(a-3)•(a-2)x是指数函数,则a=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数y=$\frac{1}{{x}^{2-m-{m}^{2}}}$在第二象限内单调递增,则m能取到的最大负整数是-1.

查看答案和解析>>

同步练习册答案