精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)的定义域为R,且f′(x)>1-f(x),f(0)=2,则不等式f(x)>1+e-x解集为(  )
A.(-1,+∞)B.(e,+∞)C.(1,+∞)D.(0,+∞)

分析 f(x)>1+e-x,等价于exf(x)-ex-1>0,设g(x)=exf(x)-ex-1,g(0)=0,则g(x)>g(0),确定g(x)是R上的增函数,即可得出结论.

解答 解:∵f(x)>1+e-x,∴exf(x)-ex-1>0,
设g(x)=exf(x)-ex-1,
∵f′(x)>1-f(x),ex>0,
∴g′(x)=ex[f(x)+f′(x)-1]>0,
∴g(x)是R上的增函数,
又g(0)=0,则g(x)>g(0)
∴x>0,
故选:D.

点评 本题考查导数知识的运用,考查函数的单调性,正确转化,构造函数,利用函数的单调性是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=alog2x+blog3x+2且f($\frac{1}{2014}$)=4,则f(2014)的值为(  )
A.-4B.-2C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.定义一种运算(a,b)*(c,d)=ad-bc,若函数f(x)=(1,log3x)*(tan$\frac{13}{4}$π,($\frac{1}{5}$)x),x0是方程f(x)=0的解,且0<x0<x1,则f(x1)的值(  )
A.恒为负值B.等于0C.恒为正值D.不大于0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数$y=\frac{1}{{\sqrt{x}}}$在x=4处的导数是-$\frac{1}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.下列命题:
①当x>11时,lgx+$\frac{1}{lgx}$的最小值为2;
②对于任意△ABC的内角A、B、C满足:sin2A=sin2B+sin2C-2sinBsinCcosA;
③对于命题p:?x∈R,使得x2+x+1<0.则¬p:?x∈R,均有x2+x+1≥0
④如果函数y=f(x)在某个区间内可导,则f(x)的导数f′(x)>0是函数y=f(x)在该区间上为增函数的充要条件.
其中正确命题的序号为②③.(填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知长方体ABCD-A1B1C1D1中,M为DD1的中点,N在AC上,且AN:NC=2:1,E为BM的中点.求证:A1,E,N三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知关于x的方程x2-2mx+9=0的两个实根分别是α、β,且$\frac{1}{α}$+$\frac{1}{β}$<2,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)满足:当x≥3时.f(x)=($\frac{1}{2}$)x;当x<3时,f(x)=f(x+1),则f($\frac{5}{2}$)的值为(  )
A.$\frac{\sqrt{2}}{16}$B.$\frac{\sqrt{3}}{16}$C.$\frac{\sqrt{2}}{32}$D.$\frac{\sqrt{3}}{32}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若幂函数y=f(x)的图象过点($\frac{1}{4}$,$\frac{1}{2}$),则f(f(9))=(  )
A.$\sqrt{3}$B.3C.$\frac{1}{3}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

同步练习册答案