精英家教网 > 高中数学 > 题目详情
19.定义一种运算(a,b)*(c,d)=ad-bc,若函数f(x)=(1,log3x)*(tan$\frac{13}{4}$π,($\frac{1}{5}$)x),x0是方程f(x)=0的解,且0<x0<x1,则f(x1)的值(  )
A.恒为负值B.等于0C.恒为正值D.不大于0

分析 函数f(x)=$(\frac{1}{5})^{x}$-log3x,可知:函数f(x)在x>0时单调递减,即可得出.

解答 解:函数f(x)=(1,log3x)*(tan$\frac{13}{4}$π,($\frac{1}{5}$)x)=$(\frac{1}{5})^{x}$-log3x,
∴函数f(x)在x>0时单调递减,
∵x0是方程f(x)=0的解,即f(x0)=0,
又0<x0<x1
则f(x1)<0,
故选:A.

点评 本题考查了指数函数与对数函数的单调性、新定义,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.曲线y=x3-x2在M(x0,y0)(x>0)处切线的斜率为8,则此切线方程为.(  )
A.8x-y-20=0B.8x-y+12=0C.8x-y-24=0D.8x-y-12=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合A={x|-2≤x≤5},B={x|m≤x≤2m-1},A∩B=B,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若正数m,n满足m+3n=5mn,则3m+4n的最小值为(  )
A.$\frac{24}{5}$B.$\frac{28}{5}$C.6D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.将${({1-\frac{1}{x^2}})^n}$(n∈N+)的展开式中x-4的系数记为an,则$\frac{1}{a_2}+\frac{1}{a_3}+…+\frac{1}{{{a_{2015}}}}$=$\frac{4028}{2015}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\frac{1+ln(x+1)}{x}$,若不等式f(x)$>\frac{k}{x+1}$对任意正实数x恒成立,则整数k的最大值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.一名大毕业生,准备利用上学期间打工积攒下来的钱去投资甲、乙两个网站,投资金额不超过10万元,有信息表明这两个网店既可能盈利,也可能亏损,盈利率(盈利率=$\frac{盈利额}{投资额}$)和亏损率(亏损率=$\frac{亏损额}{投资额}$),如表所示:
  盈利率亏损率 
 甲网店 60%30% 
 乙网店 40% 15%
该大学生在确保总的亏损额不超过2.4万元的情况下,为了获得最大盈利,应投资甲、乙两个网店各多少万元?最大盈利是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)的定义域为R,且f′(x)>1-f(x),f(0)=2,则不等式f(x)>1+e-x解集为(  )
A.(-1,+∞)B.(e,+∞)C.(1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.以下列函数中,最小值为2的是(  )
A.y=x+$\frac{1}{x}$B.y=3x+3-x
C.y=1gx+$\frac{1}{lgx}$(0<x<1)D.y=sinx+$\frac{1}{sinx}$(0<x<$\frac{π}{2}$)

查看答案和解析>>

同步练习册答案