精英家教网 > 高中数学 > 题目详情
求函数y=sin(-x),x∈[-2π,2π]的单调递增区间.

解:令z=-x,由z是x的减函数,即x增加时z减小,要使x增加时y也增加,则z减小时y要增加,于是函数y=sinz的减区间就是原函数的增区间.

∵函数y=sinz的单调递减区间是[+2kπ,+2kπ],

+2kπ≤-x≤+2kπ,

得--4kπ≤x≤--4kπ,k∈Z.

取k=-1,得≤x≤;取k=0,得-≤x≤-,由于x∈[-2π,2π],所以应取-2π≤x≤-,≤x≤2π.

因此,函数y=sin(-x),x∈[-2π,2π]的单调递增区间是[-2π,-]和[,2π].

点评:本例主要是为了使学生对求复合函数单调区间的问题有一个完整的认识.实际上,无论x的系数是正还是负,其求解的思路是一致的.本题也可先变形为y=-sin(x-),然后再求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

△ABC中,命题p:cosB>0;命题q:函数y=sin(B+
π
3
)
为减函数
设向量
m
=(sin(
π
3
+B),sinB-sinA),
n
=(sin(
π
3
-B),sinB+sinA)

(1)如果命题p为假命题,求函数y=sin(B+
π
3
)
的值域;
(2)命题p且q为真命题,求B的取值范围
(3)若向量
m
n
,求A.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=sin(x+
π
6
)sin(x-
π
6
)+acosx的最大值.(其中a为定值)

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求函数y=sin(
1
2
x+
π
6
)
的最小正周期与单调递增区间;
(2)求函数y=1-2cos(2x+
π
4
)
的最大值,及取最大值时自变量x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,命题p:cosB>0;命题q:函数y=sin(
π
3
+B)为减函数.
(1)如果命题p为假命题,求函数y=sin(
π
3
+B)的值域;
(2)命题“p且q”为真命题,求B的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=sin(x+
π
6
)+sin(x-
π
6
)+cosx,x∈[0,π]
的单调区间、最大值和最小值.

查看答案和解析>>

同步练习册答案