精英家教网 > 高中数学 > 题目详情

二次函数f(x)满足f(4+x)=f(-x),且f(2)=1,f(0)=3,若f(x)在[0,m]上有最小值1,最大值3,则实数m的取值范围是________.

解:∵二次函数f(x)满足f(4+x)=f(-x),
∴函数的对称轴为直线x=2,故可设函数解析式为f(x)=a(x-2)2+h,
∵f(2)=1,f(0)=3,
,解得
∴f(x)=(x-2)2+1
(x-2)2+1=3,则x=0或x=4
∵f(x)在[0,m]上有最小值1,最大值3,
∴实数m的取值范围是[2,4].
故答案为:[2,4].
分析:先确定函数的解析式,再根据f(x)在[0,m]上有最小值1,最大值3,即可求得实数m的取值范围.
点评:本题考查二次函数的性质,考查函数的解析式,解题的关键是确定函数的解析式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1,则函数y=f(x)-3的零点是
-1,2
-1,2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)满足:①在x=1时有极值;②二次函数图象过点(0,-3),且在该点处的切线与直线2x+y=0平行.
(1)求f(x)的解析式;
(2)求函数g(x)=f(x2)的单调递增区间与极大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(
x
+1)=x+2
,求函数f(x)的解析式;
(2)若二次函数f(x)满足f(x+1)-f(x)=2x且f(0)=1,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

二次函数f(x)满足:f(0)=2,f(x)=f(-2-x),它的导函数的图象与直线y=2x平行.
(I)求f(x)的解析式;
(II)若函数g(x)=xf(x)-x的图象与直线y=m有三个公共点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知一次函数f(x)满足条件:f(3)=7,f(5)=-1,求f(0),f(1)的值;
(2)已知二次函数f(x)满足条件:f(0)=1,f(x+1)-f(x)=2x,求f(x)的解析式.

查看答案和解析>>

同步练习册答案