精英家教网 > 高中数学 > 题目详情
已知定义在[-1,1]上的函数y=f(x)的值域为[-2,0],则函数y=f(cos2x)的值域为( )
A.[-1,1]
B.[-3,-1]
C.[-2,0]
D.不能确定
【答案】分析:先求出cos2x的范围,然后根据映射f括号里的范围相同可知值域也相等,从而得到结论.
解答:解:∵cos2x∈[-1,1],[-1,1]上的函数y=f(x)的值域为[-2,0],
∴函数y=f(cos2x)的值域为[-2,0]
故选C.
点评:本题主要考查了抽象函数的值域,解题的关键是求括号中cos2x的范围,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

10、已知定义在[-1,1]上的函数y=f(x)的值域为[-2,0],则函数y=f(cos2x)的值域为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在[1,+∞)上的函数f(x)=
4-8|x-
3
2
|,1≤x≤2
1
2
f(
x
2
),x>2
.给出下列结论:
①函数f(x)的值域为[0,4];
②关于x的方程f(x)=(
1
2
)
n
(n∈N*)
有2n+4个不相等的实数根;
③当x∈[2n-1,2n](n∈N*)时,函数f(x)的图象与x轴围成的图形面积为S,则S=2;
④存在x0∈[1,8],使得不等式x0f(x0)>6成立,
其中你认为正确的所有结论的序号为
①③
①③

查看答案和解析>>

科目:高中数学 来源: 题型:

(附加题)已知定义在[-1,1]上的奇函数f(x),在x∈(0,1]时,f(x)=
2x4x+1

(1)当x∈[-1,1]时,求f(x)的解析式;
(2)设g(x)=-2x•f(x)(-1<x<0),求函数y=g(x)的值域;
(3)若关于x的不等式λf(x)<1在x∈(0,1]上有解,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义在[-1,1]上的函数y=f(x)的值域为[-2,0],则函数y=f(cos2x)的值域为(  )
A.[-1,1]B.[-3,-1]C.[-2,0]D.不能确定

查看答案和解析>>

同步练习册答案