精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在极坐标系中,点,曲线 ,以极点为坐标原点,极轴为轴正半轴建立直角坐标系.

(1)在直角坐标系中,求点的直角坐标及曲线的参数方程;

(2)设点为曲线上的动点,求的取值范围.

【答案】(1), 为参数);(2) .

【解析】试题分析:

1)由公式可化点的极坐标为直角坐标,也可化曲线的极坐标方程为直角坐标方程,由直角坐标方程知曲线是圆,且圆心坐标与半径都已知,可由圆的标准参数方程可得;

2)利用参数方程设出点坐标,由两点间距离公式求得,应用两角和与差的正弦公式化表达式为形式,再结合正弦函数性质可得取值范围.

试题解析:

(1)由,解得

因为,所以, ,即

所以曲线的参数方程为: 为参数);

(2)不妨设

因为,所以

因此, 的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在锐角三角形中,边a、b是方程x2﹣2 x+2=0的两根,角A、B满足:2sin(A+B)﹣ =0,求角C的度数,边c的长度及△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四边形ABCD中,AB⊥DA,CE= ,∠ADC= ;E为AD边上一点,DE=1,EA=2,∠BEC=

(1)求sin∠CED的值;
(2)求BE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某食品店为了了解气温对销售量的影响,随机记录了该店1月份中5天的日销售量(单位:千克)与该地当日最低气温(单位: )的数据,如下表:

x

2

5

8

9

11

y

12

10

8

8

7

(1)求出的回归方程

(2)判断之间是正相关还是负相关;若该地1月份某天的最低气温为,请用所求回归方程预测该店当日的销售量;

(3)设该地1月份的日最低气温,其中近似为样本平均数 近似为样本方差,求.

附:①回归方程中, .

,若,则 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面内有n(n∈N*)条直线,其中任何两条不平行,任何三条不过同一点,若这n条直线把平面分成f(n)个平面区域,则f(3)=;f(n)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆和定点,由圆外一点向圆引切线,切点为,且满足

(1)求实数满足的等量关系

(2)求线段长的最小值

(3)若以为圆心所作的圆与圆有公共点,试求半径取最小值时圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中, 的中点, .

(1)求证: 平面

(2)当时,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“累积净化量”是空气净化器质量的一个重要衡量指标,它是指空气净化从开始使用到净化效率为50%时对颗粒物的累积净化量,以克表示,根据《空气净化器》国家标准,对空气净化器的累计净化量有如下等级划分:

累积净化量(克)

12以上

等级

为了了解一批空气净化器(共5000台)的质量,随机抽取台机器作为样本进行估计,已知这台机器的累积净化量都分布在区间中,按照均匀分组,其中累积净化量在的所有数据有:4.5,4.6,5.2,5.3,5.7和5.9,并绘制了频率分布直方图,如图所示:

(1)求的值及频率分布直方图中的值;

(2)以样本估计总体,试估计这批空气净化器(共5000台)中等级为的空气净化器有多少台?

(3)从累积净化量在的样本中随机抽取2台,求恰好有1台等级为的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△OAB的顶点坐标为O(0,0),A(2,9),B(6,﹣3),点P的横坐标为14,且 ,点Q是边AB上一点,且 =0.
(1)求实数λ的值与点P的坐标;
(2)求点Q的坐标.

查看答案和解析>>

同步练习册答案