精英家教网 > 高中数学 > 题目详情

【题目】已知圆和定点,由圆外一点向圆引切线,切点为,且满足

(1)求实数满足的等量关系

(2)求线段长的最小值

(3)若以为圆心所作的圆与圆有公共点,试求半径取最小值时圆的方程.

【答案】(1);(2);(3).

【解析】试题分析:(1)连接为直角三角形利用即可求得实数满足的等量关系;(2)表示出利用配方法即可求出的最小值;(3)由⊙与⊙有公共点,可得只需求出的最小值以及取得最小值时的 的值,即可求出半径最小值的圆的方程.

试题解析:(1)连接

为切点,

2

∴当时,线段长的最小值为

3)设半径为

∵⊙与⊙有公共点,⊙半径为

∴当时,,此时

∴当半径取最小值时,圆方程为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥的底面是平行四边形, 平面的中点, 的中点.

(1)求证: 平面

(2),求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的各项均为正数,其前n项和为Sn , 且满足a1=1,an+1=2 +1,n∈N*
(1)求a2的值;
(2)求数列{an}的通项公式;
(3)是否存在正整数k,使ak , S2k1 , a4k成等比数列?若存在,求k的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数为常数),为自然对数的底数.

(1)当时,求实数的取值范围;

(2)当时,求使得成立的最小正整数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,点,曲线 ,以极点为坐标原点,极轴为轴正半轴建立直角坐标系.

(1)在直角坐标系中,求点的直角坐标及曲线的参数方程;

(2)设点为曲线上的动点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=ax2+bx+c.
(1)若f(﹣1)=0,试判断函数f(x)零点个数;
(2)若对x1x2∈R,且x1<x2 , f(x1)≠f(x2),证明方程f(x)= 必有一个实数根属于(x1 , x2).
(3)是否存在a,b,c∈R,使f(x)同时满足以下条件
①当x=﹣1时,函数f(x)有最小值0;
②对任意x∈R,都有0≤f(x)﹣x≤ 若存在,求出a,b,c的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若动点在直线上,动点在直线上,设线段的中点为,且,则的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.]

(1)根据频率分布直方图计算图中各小长方形的宽度;

(2)试估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);

(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:

广告投入 (单位:万元)

1

2

3

4

5

销售收益 (单位:万元)

2

3

2

7

由表中的数据显示, 之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=a﹣bcos(2x+ )(b>0)的最大值为3,最小值为﹣1.
(1)求a,b的值;
(2)当求x∈[ π]时,函数g(x)=4asin(bx﹣ )的值域.

查看答案和解析>>

同步练习册答案