精英家教网 > 高中数学 > 题目详情

【题目】若动点在直线上,动点在直线上,设线段的中点为,且,则的取值范围是__________

【答案】

【解析】

由直线方程可知两直线斜率相等,所以,由平行线线的几何性质知的轨迹为平行于的直线,直线方程为,又点在圆的内部,故的轨迹是如图所示的线段.即原点和距离的平方.由图可知,故答案为

【方法点晴】本题主要考查轨迹方程及解析几何求最值,属于难题.解决曲线轨迹中的最值问题一般有两种方法:一是几何意义,特别是用曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将曲线轨迹中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法.本题是先将转化为直线上的点与原点距离的平方,然后利用几何方法解答的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且满足Sn=2an﹣2.若数列{bn}满足bn=10﹣log2an , 则是数列{bn}的前n项和取最大值时n的值为(
A.8
B.10
C.8或9
D.9或10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某食品店为了了解气温对销售量的影响,随机记录了该店1月份中5天的日销售量(单位:千克)与该地当日最低气温(单位: )的数据,如下表:

x

2

5

8

9

11

y

12

10

8

8

7

(1)求出的回归方程

(2)判断之间是正相关还是负相关;若该地1月份某天的最低气温为,请用所求回归方程预测该店当日的销售量;

(3)设该地1月份的日最低气温,其中近似为样本平均数 近似为样本方差,求.

附:①回归方程中, .

,若,则 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆和定点,由圆外一点向圆引切线,切点为,且满足

(1)求实数满足的等量关系

(2)求线段长的最小值

(3)若以为圆心所作的圆与圆有公共点,试求半径取最小值时圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中, 的中点, .

(1)求证: 平面

(2)当时,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4.设圆C的半径为1,圆心在l上.
(1)若圆心C也在直线y=﹣x+5上,求圆C的方程;
(2)在(1)的条件下,过点A作圆C的切线,求切线的方程;
(3)若圆C上存在点M,使|MA|=|MO|,求圆心C的横坐标a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“累积净化量”是空气净化器质量的一个重要衡量指标,它是指空气净化从开始使用到净化效率为50%时对颗粒物的累积净化量,以克表示,根据《空气净化器》国家标准,对空气净化器的累计净化量有如下等级划分:

累积净化量(克)

12以上

等级

为了了解一批空气净化器(共5000台)的质量,随机抽取台机器作为样本进行估计,已知这台机器的累积净化量都分布在区间中,按照均匀分组,其中累积净化量在的所有数据有:4.5,4.6,5.2,5.3,5.7和5.9,并绘制了频率分布直方图,如图所示:

(1)求的值及频率分布直方图中的值;

(2)以样本估计总体,试估计这批空气净化器(共5000台)中等级为的空气净化器有多少台?

(3)从累积净化量在的样本中随机抽取2台,求恰好有1台等级为的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的方程的两个根分别为其中 ,则的取值范围是(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱中,底面是正方形,侧棱底面 的中点.

)求证: 平面

)求证:

查看答案和解析>>

同步练习册答案