精英家教网 > 高中数学 > 题目详情

【题目】如图,已知正方体的棱长为2EFG分别为的中点,给出下列命题:

①异面直线EFAG所成的角的余弦值为

②过点EFG作正方体的截面,所得的截面的面积是

平面

④三棱锥的体积为1

其中正确的命题是_____________(填写所有正确的序号)

【答案】①③④

【解析】

的中点为点H,连接GHAH,如图1所示,因为,所以就是异面直线EFAG所成的角

易知在中,,所以,①正确;

1 2 3

矩形即为过点EFG所得正方体的截面,如图2所示,易知,所以,②错误;

分别以DADCDD1x轴、y轴、z轴建立如图3所示直角坐标系,则

因为,所以,又平面

平面,所以平面,故③正确

,④正确.

故答案为:①③④

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】半圆的直径的两端点为,点在半圆及直径上运动,若将点的纵坐标伸长到原来的2倍(横坐标不变)得到点,记点的轨迹为曲线.

(1)求曲线的方程;

(2)若称封闭曲线上任意两点距离的最大值为该曲线的直径,求曲线直径”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在等腰梯形中,两腰,底边的三等分点,的中点.分别沿将四边形折起,使重合于点,得到如图2所示的几何体.在图2中,分别为的中点.

(1)证明:平面

(2)求几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是各项均不为0的等差数列,公差为为其前项和,且满足.数列满足为数列的前项和.

1)求

2)求

3)若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的各项均为正数,且,对于任意的,均有.

1)求证:是等比数列,并求出的通项公式;

2)若数列中去掉的项后,余下的项组成数列,求

3)设,数列的前项和为,是否存在正整数,使得成等比数列,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C过点,左焦点

1)求椭圆C的标准方程;

2)过点F作于x轴不重合的直线ll与椭圆交于AB两点,点A在直线上的投影N与点B的连线交x轴于D点,D点的横坐标是否为定值?若是,请求出定值;若不是,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线C的参数方程为为参数),以平面直角坐标系的原点O为极点,x轴正半轴为极轴建立极坐标系.

1)求曲线C的极坐标方程;

2)过点,倾斜角为的直线l与曲线C相交于MN两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”。“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸未,甲申、乙酉、丙戌…癸巳,…,共得到60个组合,称六十甲子,周而复始,无穷无尽。2019年是“干支纪年法”中的己亥年,那么2026年是“干支纪年法”中的

A. 甲辰年B. 乙巳年C. 丙午年D. 丁未年

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司新上一条生产线,为保证新的生产线正常工作,需对该生产线进行检测,现从该生产线上随机抽取100件产品,测量产品数据,用统计方法得到样本的平均数,标准差,绘制如图所示的频率分布直方图,以频率值作为概率估值。

(1)从该生产线加工的产品中任意抽取一件,记其数据为,依据以下不等式评判(表示对应事件的概率)

评判规则为:若至少满足以上两个不等式,则生产状况为优,无需检修;否则需检修生产线,试判断该生产线是否需要检修;

(2)将数据不在内的产品视为次品,从该生产线加工的产品中任意抽取2件,次品数记为,求的分布列与数学期望

查看答案和解析>>

同步练习册答案