【题目】已知数列
是各项均不为0的等差数列,公差为
,
为其前
项和,且满足
.数列
满足
,
为数列
的前
项和.
(1)求
;
(2)求
;
(3)若对任意的
,不等式
恒成立,求实数
的取值范围.
科目:高中数学 来源: 题型:
【题目】某公司举办捐步公益活动,参与者通过捐赠每天的运动步数获得公司提供的牛奶,再将牛奶捐赠给留守儿童.此活动不但为公益事业作出了较大的贡献,公司还获得了相应的广告效益.据测算,首日参与活动人数为
人,以后每天人数比前一天都增加
,
天后捐步人数稳定在第
天的水平,假设此项活动的启动资金为
万元,每位捐步者每天可以使公司收益
元(以下人数精确到
人,收益精确到
元).
(1)求活动开始后第
天的捐步人数,及前
天公司的捐步总收益;
(2)活动开始第几天以后公司的捐步总收益可以收回启动资金并有盈余?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,以原点为圆心,椭圆
的短半轴长为半径的圆与直线
相切.
(Ⅰ)求椭圆方程;
(Ⅱ)设
为椭圆右顶点,过椭圆
的右焦点的直线
与椭圆
交于
,
两点(异于
),直线
,
分别交直线
于
,
两点. 求证:
,
两点的纵坐标之积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,
是某海湾旅游区的一角,其中
,为了营造更加优美的旅游环境,旅游区管委会决定在直线海岸
和
上分别修建观光长廊
和AC,其中
是宽长廊,造价是
元/米,
是窄长廊,造价是
元/米,两段长廊的总造价为120万元,同时在线段
上靠近点
的三等分点
处建一个观光平台,并建水上直线通道
(平台大小忽略不计),水上通道的造价是
元/米.
(1) 若规划在三角形
区域内开发水上游乐项目,要求
的面积最大,那么
和
的长度分别为多少米?
(2) 在(1)的条件下,建直线通道
还需要多少钱?
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,点
,
是曲线
上的任意一点,动点
满足![]()
(1)求点
的轨迹方程;
(2)经过点
的动直线
与点
的轨迹方程交于
两点,在
轴上是否存在定点
(异于点
),使得
?若存在,求出
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右两个焦点分别为
,P是椭圆上位于第一象限内的点,
轴,垂足为Q,
,
,
的面积为
.
![]()
(1)求椭圆F的方程:
(2)若M是椭圆上的动点,求
的最大值,并求出
取得最大值时M的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知正方体
的棱长为2,E、F、G分别为
的中点,给出下列命题:
![]()
①异面直线EF与AG所成的角的余弦值为
;
②过点E、F、G作正方体的截面,所得的截面的面积是
;
③
平面![]()
④三棱锥
的体积为1
其中正确的命题是_____________(填写所有正确的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】人们常说的“幸福感指数”就是指某个人主观地评价他对自己目前生活状态的满意程度的指标,常用区间
内的一个数来表示,该数越接近
表示满意度越高.为了解某地区居民的幸福感情况,随机对该地区的男、女居民各
人进行了调查,调查数据如表所示:
幸福感指数 |
|
|
|
|
|
男居民人数 |
|
|
|
|
|
女居民人数 |
|
|
|
|
|
(1)估算该地区居民幸福感指数的平均值;
(2)若居民幸福感指数不小于
,则认为其幸福.为了进一步了解居民的幸福满意度,调查组又在该地区随机抽取
对夫妻进行调查,用
表示他们之中幸福夫妻(夫妻二人都感到幸福)的对数,求
的期望(以样本的频率作为总体的概率).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
点在正方体
的棱
上(不含端点),给出下列五个命题:
![]()
①过
点有且只有一条直线与直线
,
都是异面直线;
②过
点有且只有一条直线与直线
,
都相交;
③过
点有且只有一条直线与直线
,
都垂直;
④过
点有无数个平面与直线
,
都相交;
⑤过
点有无数个平面与直线
,
都平行;
其中真命题是____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com