【题目】如图所示,
是某海湾旅游区的一角,其中
,为了营造更加优美的旅游环境,旅游区管委会决定在直线海岸
和
上分别修建观光长廊
和AC,其中
是宽长廊,造价是
元/米,
是窄长廊,造价是
元/米,两段长廊的总造价为120万元,同时在线段
上靠近点
的三等分点
处建一个观光平台,并建水上直线通道
(平台大小忽略不计),水上通道的造价是
元/米.
(1) 若规划在三角形
区域内开发水上游乐项目,要求
的面积最大,那么
和
的长度分别为多少米?
(2) 在(1)的条件下,建直线通道
还需要多少钱?
![]()
【答案】(1)
和AC的长度分别为750米和1500米(2)
万元
【解析】
试题(1)设
长为
米,
长为
米,依题意得
,即
,表示面积,利用基本不等式可得结论;(2)利用向量方法,将
表示为
,根据向量的数量积与模长的关系可得结果.
试题解析:(1)设
长为
米,
长为
米,依题意得
,
即
,
=
![]()
当且仅当
,即
时等号成立,
所以当
的面积最大时,
和AC的长度分别为750米和1500米
(2)在(1)的条件下,因为
.
由
得![]()
,
元
所以,建水上通道
还需要
万元.
解法二:在
中,
在
中,![]()
在
中,![]()
=
元
所以,建水上通道
还需要
万元.
解法三:以A为原点,以AB为
轴建立平面直角坐标系,则
,![]()
,即
,设
由
,求得
, 所以
所以,
元
所以,建水上通道
还需要
万元.
科目:高中数学 来源: 题型:
【题目】垃圾分一分,城市美十分;垃圾分类,人人有责.某市为进一步推进生活垃圾分类工作,调动全民参与的积极性,举办了“垃圾分类游戏挑战赛”.据统计,在为期
个月的活动中,共有
万人次参与.为鼓励市民积极参与活动,市文明办随机抽取
名参与该活动的网友,以他们单次游戏得分作为样本进行分析,由此得到如下频数分布表:
单次游戏得分 |
|
|
|
|
|
|
频数 |
|
|
|
|
|
|
(1)根据数据,估计参与活动的网友单次游戏得分的平均值及标准差(同一组中的数据用该组区间的中点值作代表);(其中标准差的计算结果要求精确到
)
(2)若要从单次游戏得分在
、
、
的三组参与者中,用分层抽样的方法选取
人进行电话回访,再从这
人中任选
人赠送话费,求此
人单次游戏得分不在同一组内的概率.
附:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为配合“2019双十二”促销活动,某公司的四个商品派送点如图环形分布,并且公司给
四个派送点准备某种商品各50个.根据平台数据中心统计发现,需要将发送给
四个派送点的商品数调整为40,45,54,61,但调整只能在相邻派送点进行,每次调动可以调整1件商品.为完成调整,则( )
![]()
A.最少需要16次调动,有2种可行方案
B.最少需要15次调动,有1种可行方案
C.最少需要16次调动,有1种可行方案
D.最少需要15次调动,有2种可行方案
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市对城市路网进行改造,拟在原有a个标段(注:一个标段是指一定长度的机动车道)的基础上,新建x个标段和n个道路交叉口,其中n与x满足n=ax+5.已知新建一个标段的造价为m万元,新建一个道路交叉口的造价是新建一个标段的造价的k倍.
(1)写出新建道路交叉口的总造价y(万元)与x的函数关系式;
(2)设P是新建标段的总造价与新建道路交叉口的总造价之比.若新建的标段数是原有标段数的20%,且k≥3.问:P能否大于
,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在等腰梯形
中,两腰
,底边
是
的三等分点,
是
的中点.分别沿
将四边形
和
折起,使
重合于点
,得到如图2所示的几何体.在图2中,
分别为
的中点.
![]()
(1)证明:
平面![]()
(2)求几何体
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解贵州省某州2020届高三理科生的化学成绩的情况,该州教育局组织高三理科生进行了摸底考试,现从参加考试的学生中随机抽取了100名理科生,,将他们的化学成绩(满分为100分)分为![]()
![]()
![]()
![]()
![]()
6组,得到如图所示的频率分布直方图.
![]()
(1)求a的值;
(2)记A表示事件“从参加考试的所有理科生中随机抽取一名学生,该学生的化学成绩不低于70分”,试估计事件A发生的概率;
(3)在抽取的100名理科生中,采用分层抽样的方法从成绩在
内的学生中抽取10名,再从这10名学生中随机抽取4名,记这4名理科生成绩在
内的人数为X,求X的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
是各项均不为0的等差数列,公差为
,
为其前
项和,且满足
.数列
满足
,
为数列
的前
项和.
(1)求
;
(2)求
;
(3)若对任意的
,不等式
恒成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
过点
,左焦点
(1)求椭圆C的标准方程;
(2)过点F作于x轴不重合的直线l,l与椭圆交于A,B两点,点A在直线
上的投影N与点B的连线交x轴于D点,D点的横坐标
是否为定值?若是,请求出定值;若不是,请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AD∥BC,
ADC=
PAB=90°,BC=CD=
AD.E为棱AD的中点,异面直线PA与CD所成的角为90°.
![]()
(I)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;
(II)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com