【题目】如图1,在等腰梯形
中,两腰
,底边
是
的三等分点,
是
的中点.分别沿
将四边形
和
折起,使
重合于点
,得到如图2所示的几何体.在图2中,
分别为
的中点.
![]()
(1)证明:
平面![]()
(2)求几何体
的体积.
科目:高中数学 来源: 题型:
【题目】已知直线
、
与平面
、
满足
,
,
,则下列命题中正确的是( )
A.
是
的充分不必要条件
B.
是
的充要条件
C.设
,则
是
的必要不充分条件
D.设
,则
是
的既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,以原点为圆心,椭圆
的短半轴长为半径的圆与直线
相切.
(Ⅰ)求椭圆方程;
(Ⅱ)设
为椭圆右顶点,过椭圆
的右焦点的直线
与椭圆
交于
,
两点(异于
),直线
,
分别交直线
于
,
两点. 求证:
,
两点的纵坐标之积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
,![]()
,记
.
(1)若
,
,当
时,求
的最大值;
(2)若
,
,且方程![]()
有两个不相等的实根
、
,求
的取值范围;
(3)若
,
,
,且a、b、c是三角形的三边长,试求满足等式:
有解的最大的x的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,
是某海湾旅游区的一角,其中
,为了营造更加优美的旅游环境,旅游区管委会决定在直线海岸
和
上分别修建观光长廊
和AC,其中
是宽长廊,造价是
元/米,
是窄长廊,造价是
元/米,两段长廊的总造价为120万元,同时在线段
上靠近点
的三等分点
处建一个观光平台,并建水上直线通道
(平台大小忽略不计),水上通道的造价是
元/米.
(1) 若规划在三角形
区域内开发水上游乐项目,要求
的面积最大,那么
和
的长度分别为多少米?
(2) 在(1)的条件下,建直线通道
还需要多少钱?
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,点
,
是曲线
上的任意一点,动点
满足![]()
(1)求点
的轨迹方程;
(2)经过点
的动直线
与点
的轨迹方程交于
两点,在
轴上是否存在定点
(异于点
),使得
?若存在,求出
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知正方体
的棱长为2,E、F、G分别为
的中点,给出下列命题:
![]()
①异面直线EF与AG所成的角的余弦值为
;
②过点E、F、G作正方体的截面,所得的截面的面积是
;
③
平面![]()
④三棱锥
的体积为1
其中正确的命题是_____________(填写所有正确的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
,圆
,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.
(1)求曲线C的方程;
(2)设不经过点
的直线l与曲线C相交于A,B两点,直线QA与直线QB的斜率均存在且斜率之和为-2,证明:直线l过定点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com