【题目】设
,![]()
,记
.
(1)若
,
,当
时,求
的最大值;
(2)若
,
,且方程![]()
有两个不相等的实根
、
,求
的取值范围;
(3)若
,
,
,且a、b、c是三角形的三边长,试求满足等式:
有解的最大的x的范围.
【答案】(1)12;(2)
;(3)
.
【解析】
(1)根据
,
,得到关于
,
的方程组,解出
,
,利用配方法,结合
的取值范围,得到
最大值;(2)根据方程
有两个不相等的实根
、
,求出
的表达值,结合不等式的性质求出
的范围;(3)问题等价于存在
使得
成立,令
,根据函数的单调性求出
的范围,得到答案.
(1)因为
,
,
所以
,解得
,
.
所以![]()
因为
,所以![]()
所以当
,即
时,
取得最大值为
.
(2)
,
,
,
因为
,所以
,
令
,
,
而
,则![]()
因为
,所以![]()
所以
,
,且
,
所以![]()
所以
的范围为
.
(3)当
时,
有解
等价于,存在
使得
成立,
令![]()
因为
,
,且
,
显然
,
,
所以
,
,
所以
为减函数,
因为
,
,
是三角形的三边,所以
,即![]()
所以
,
又
是减函数,
所以存在
使得
,
所以
的范围是![]()
科目:高中数学 来源: 题型:
【题目】对于函数
,若存在实数
,使得
为
上的奇函数,则称
是位差值为
的“位差奇函数”.
(1)判断函数
和
是否为位差奇函数?说明理由;
(2)若
是位差值为
的位差奇函数,求
的值;
(3)若
对任意属于区间
中的
都不是位差奇函数,求实数
、
满足的条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】半圆
的直径的两端点为
,点
在半圆
及直径
上运动,若将点
的纵坐标伸长到原来的2倍(横坐标不变)得到点
,记点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)若称封闭曲线上任意两点距离的最大值为该曲线的“直径”,求曲线
的“直径”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列
满足
,
,
.
(1)求证:数列
为等比数列;
(2)对于大于
的正整数
、
(其中
),若
、
、
三个数经适当排序后能构成等差数列,求符合条件的数组
;
(3)若数列
满足
,是否存在实数
,使得数列
是单调递增数列?若存在,求出
的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,给定
个整点
,其中
.
(Ⅰ)当
时,从上面的
个整点中任取两个不同的整点
,求
的所有可能值;
(Ⅱ)从上面
个整点中任取
个不同的整点,
.
(i)证明:存在互不相同的四个整点
,满足
,
;
(ii)证明:存在互不相同的四个整点
,满足
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在等腰梯形
中,两腰
,底边
是
的三等分点,
是
的中点.分别沿
将四边形
和
折起,使
重合于点
,得到如图2所示的几何体.在图2中,
分别为
的中点.
![]()
(1)证明:
平面![]()
(2)求几何体
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,沿河有A、B两城镇,它们相距
千米.以前,两城镇的污水直接排入河里,现为保护环境,污水需经处理才能排放.两城镇可以单独建污水处理厂,或者联合建污水处理厂(在两城镇之间或其中一城镇建厂,用管道将污水从各城镇向污水处理厂输送).依据经验公式,建厂的费用为
(万元),
表示污水流量;铺设管道的费用(包括管道费)
(万元),
表示输送污水管道的长度(千米).已知城镇A和城镇B的污水流量分别为
、
,
、
两城镇连接污水处理厂的管道总长为
千米.假定:经管道输送的污水流量不发生改变,污水经处理后直接排入河中.请解答下列问题(结果精确到
):
![]()
(1)若在城镇A和城镇B单独建厂,共需多少总费用?
(2)考虑联合建厂可能节约总投资,设城镇A到拟建厂的距离为
千米,求联合建厂的总费用
与
的函数关系式,并求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的各项均为正数,且
,对于任意的
,均有
,
.
(1)求证:
是等比数列,并求出
的通项公式;
(2)若数列
中去掉
的项后,余下的项组成数列
,求
;
(3)设
,数列
的前
项和为
,是否存在正整数
,使得
、
、
成等比数列,若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com