精英家教网 > 高中数学 > 题目详情

【题目】将一颗均匀的骰子掷两次,第一次得到的点数记为,第一次得到的点数记为,则方程组有唯一解的概率是___________

【答案】

【解析】

所有的可能的结果(ab)共有6×636种,满足直线l1l2平行的结果(ab)共有3个,由此求得直线l1l2平行的概率,用1减去直线l1l2平行的概率,即得所求.

由题意可知,方程组有唯一解转化为表示方程组的两直线相交,

即直线l1:ax+by=3与直线l2x+2y=2相交,

又所有的可能出现的结果(ab)共有6×636种,当直线l1l2平行时,应有

故其中满足直线l1与直线l2平行的结果(ab)共有:(12)、(24)、(36),总计3个,故直线l1l2平行的概率为.又由a,b的意义可知两条直线不重合,

故直线l1l2相交的概率为 1

∴方程组有唯一解的概率为 1

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆)的离心率为,且经过点.

(1)求椭圆的方程;

(2)过点作直线与椭圆交于不同的两点,试问在轴上是否存在定点使得直线与直线恰关于轴对称?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆的右焦点为,直线为.

1)求到点和直线的距离相等的点的轨迹方程;

2)过点作直线交椭圆于点,又直线于点,若,求线段的长;

3)已知点的坐标为,直线交直线于点,且和椭圆的一个交点为点,是否存在实数,使得?若存在,求出实数,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将数列的前项分成两部分,且两部分的项数分别是,若两部分和相等,则称数列的前项的和能够进行等和分割.

1)若,试写出数列的前项和所有等和分割;

2)求证:等差数列的前项的和能够进行等和分割;

3)若数列的通项公式为:,且数列的前项的和能够进行等和分割,求所有满足条件的.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆经过点.

(1)求椭圆的标准方程;

(2)设点是椭圆上的任意一点,射线与椭圆交于点,过点的直线与椭圆有且只有一个公共点,直线与椭圆交于两个相异点,证明:面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列A: ,… ().如果对小于()的每个正整数都有 ,则称是数列A的一个“G时刻”.是数列A的所有“G时刻组成的集合.

(1)对数列A:-2,2,-1,1,3,写出的所有元素

(2)证明:若数列A中存在使得>,则

(3)证明:若数列A满足- ≤1(n=2,3, …,N),的元素个数不小于 -.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列,.

(1),求

(2),求关于m的表达式;

(3)若数列均是项数为项的有穷数列.,现将中的项一一取出,并按照从小到大的顺序排成一列,得到.求证:对于给定的的所有可能取值的奇偶性相同.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于实数x,符号[x]表示不超过x的最大整数,例如[π]=3,[﹣1.08]=﹣2,定义函数f(x)=x﹣[x],则下列命题中正确的是  

①函数f(x)的最大值为1; ②函数f(x)的最小值为0;

③方程有无数个根; ④函数f(x)是增函数.

A. ②③ B. ①②③ C. D. ③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:

合计

爱好

40

20

60

不爱好

20

30

50

合计

60

50

110

K2

附表:

P(K2k0)

0.050

0.010

0.001

k0

3.841

6.635

10.828

参照附表,得到的正确结论是(

A.在犯错误的概率不超过0.1%的前提下,认为爱好该项运动与性别有关

B.在犯错误的概率不超过0.1%的前提下,认为爱好该项运动与性别无关

C.99%以上的把握认为爱好该项运动与性别有关

D.99%以上的把握认为爱好该项运动与性别无关

查看答案和解析>>

同步练习册答案