【题目】将一颗均匀的骰子掷两次,第一次得到的点数记为
,第一次得到的点数记为
,则方程组
有唯一解的概率是___________.
【答案】![]()
【解析】
所有的可能的结果(a,b)共有6×6=36种,满足直线l1与l2平行的结果(a,b)共有3个,由此求得直线l1与l2平行的概率,用1减去直线l1与l2平行的概率,即得所求.
由题意可知,方程组有唯一解转化为表示方程组
的两直线相交,
即直线l1:ax+by=3与直线l2:x+2y=2相交,
又所有的可能出现的结果(a,b)共有6×6=36种,当直线l1与l2平行时,应有
,
故其中满足直线l1与直线l2平行的结果(a,b)共有:(1,2)、(2,4)、(3,6),总计3个,故直线l1与l2平行的概率为
.又由a,b的意义可知两条直线不重合,
故直线l1与l2相交的概率为 1
,
∴方程组有唯一解的概率为 1
,
故答案为:
.
科目:高中数学 来源: 题型:
【题目】已知椭圆
(
)的离心率为
,且经过点
.
(1)求椭圆
的方程;
(2)过点
作直线
与椭圆
交于不同的两点
,
,试问在
轴上是否存在定点
使得直线
与直线
恰关于
轴对称?若存在,求出点
的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,椭圆
的右焦点为
,直线为
.
(1)求到点
和直线
的距离相等的点
的轨迹方程;
(2)过点
作直线交椭圆
于点
,
,又直线
交
于点
,若
,求线段
的长;
(3)已知点
的坐标为
,
,直线
交直线
于点
,且和椭圆
的一个交点为点
,是否存在实数
,使得
?若存在,求出实数
,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将数列
的前
项分成两部分,且两部分的项数分别是
,若两部分和相等,则称数列
的前
项的和能够进行
等和分割.
(1)若
,试写出数列
的前
项和所有等和分割;
(2)求证:等差数列
的前
项的和能够进行
等和分割;
(3)若数列
的通项公式为:
,且数列
的前
项的和能够进行等和分割,求所有满足条件的
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的离心率为
,椭圆
:
经过点
.
(1)求椭圆
的标准方程;
(2)设点
是椭圆
上的任意一点,射线
与椭圆
交于点
,过点
的直线
与椭圆
有且只有一个公共点,直线
与椭圆
交于
,
两个相异点,证明:
面积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列A:
,
,…
(
).如果对小于
(
)的每个正整数
都有
<
,则称
是数列A的一个“G时刻”.记“
是数列A的所有“G时刻”组成的集合.
(1)对数列A:-2,2,-1,1,3,写出
的所有元素;
(2)证明:若数列A中存在
使得
>
,则
;
(3)证明:若数列A满足
-
≤1(n=2,3, …,N),则
的元素个数不小于
-
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
和
,记
.
(1)若
,求
;
(2)若
,求
关于m的表达式;
(3)若数列
和
均是项数为
项的有穷数列.,现将
和
中的项一一取出,并按照从小到大的顺序排成一列,得到
.求证:对于给定的
,
的所有可能取值的奇偶性相同.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于实数x,符号[x]表示不超过x的最大整数,例如[π]=3,[﹣1.08]=﹣2,定义函数f(x)=x﹣[x],则下列命题中正确的是
①函数f(x)的最大值为1; ②函数f(x)的最小值为0;
③方程
有无数个根; ④函数f(x)是增函数.
A. ②③ B. ①②③ C. ② D. ③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:
男 | 女 | 合计 | |
爱好 | 40 | 20 | 60 |
不爱好 | 20 | 30 | 50 |
合计 | 60 | 50 | 110 |
由K2=
,
附表:
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
参照附表,得到的正确结论是( )
A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
C.有99%以上的把握认为“爱好该项运动与性别有关”
D.有99%以上的把握认为“爱好该项运动与性别无关”
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com