1£®É趨ÒåÓòΪRµÄº¯Êý$f£¨x£©=\left\{\begin{array}{l}\begin{array}{l}{\frac{1}{x-1}\;£¬\;x£¾1}\\{1£¬x=1}\end{array}\\ \frac{1}{1-x}£¬x£¼1\end{array}\right.$£¬Èô¹ØÓÚxµÄ·½³Ìf2£¨x£©+bf£¨x£©+c=0ÓÐÈý¸ö²»Í¬µÄ½âx1£¬x2£¬x3£¬Ôò${x_1}^2+{x_2}^2+{x_3}^2$µÄÖµÊÇ£¨¡¡¡¡£©
A£®1B£®3C£®5D£®10

·ÖÎö ×ö³öf£¨x£©µÄº¯ÊýͼÏó£¬ÅжÏf£¨x£©=tµÄ½âµÄÇé¿ö£¬¸ù¾Ýf2£¨x£©+bf£¨x£©+c=0µÄ½âµÃ¸öÊýÅжÏf£¨x£©µÄ·¶Î§£¬µÃ³öx1£¬x2£¬x3£®

½â´ð ½â£ºÁîf£¨x£©=t£¬×ö³öf£¨x£©µÄº¯ÊýͼÏóÈçÏ£º

ÓÉͼÏó¿ÉÖªµ±t=1ʱ£¬f£¨x£©=tÓÐÈý½â£¬
µ±0£¼t£¼1»òt£¾1ʱ£¬f£¨x£©=tÓÐÁ½½â£¬
µ±t¡Ü0ʱ£¬·½³Ìf£¨x£©=tÎ޽⣮
¡ß¹ØÓÚxµÄ·½³Ìf2£¨x£©+bf£¨x£©+c=0ÓÐÈý¸ö²»Í¬µÄ½âx1£¬x2£¬x3£¬
¡àf£¨x£©=1£¬
µ±x£¼1ʱ£¬Áî$\frac{1}{1-x}$=1½âµÃx=0£¬
µ±x£¾1ʱ£¬Áî$\frac{1}{x-1}=1$½âµÃx=2£¬
µ±x=1ʱ£¬ÏÔÈ»x=1ÊÇf£¨x£©=1µÄ½â£®
²»·ÁÉèx1£¼x2£¼x3£¬Ôòx1=0£¬x2=1£¬x3=2£¬
¡à${x_1}^2+{x_2}^2+{x_3}^2$=5£®
¹ÊÑ¡C£®

µãÆÀ ±¾Ì⿼²éÁ˺¯ÊýÁãµãµÄ¸öÊýÓ뺯ÊýͼÏóµÄ¹ØÏµ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®µãPÊÇÇúÏßy=x2-lnxÉÏÈÎÒâÒ»µã£¬ÔòµãPµ½Ö±Ïßy=x+2µÄ×îС¾àÀëΪ£¨¡¡¡¡£©
A£®$\frac{{\sqrt{2}}}{2}$B£®$\sqrt{2}$C£®2$\sqrt{2}$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®¡÷ABCµÄÄÚ½ÇΪA¡¢B¡¢C£¬ÆäÖÐA=$\frac{¦Ð}{4}$£¬cosC=$\frac{3\sqrt{10}}{10}$£¬BC=$\sqrt{10}$£®µãDÊDZßACµÄÖе㣬ÔòÖÐÏßBDµÄ³¤Îª$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®·Ç¸ºÊýµÄƽ·½ÊÇÕýÊýµÄ·ñ¶¨ÊǸºÊýµÄƽ·½ÊÇ·ÇÕýÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÇúÏßy=lnx+xÔڵ㣨1£¬f£¨1£©£©´¦µÄÇÐÏß·½³ÌΪ£¨¡¡¡¡£©
A£®y=2x-1B£®y=-x+1C£®y=x-1D£®y=-2x+2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªº¯Êýf£¨x£©=|x-m|-|x-2|£®
£¨1£©Èôº¯Êýf£¨x£©µÄÖµÓòΪ[-4£¬4]£¬ÇóʵÊýmµÄÖµ£»
£¨2£©Èô²»µÈʽf£¨x£©¡Ý|x-4|µÄ½â¼¯ÎªM£¬ÇÒ[2£¬4]⊆M£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÉèÍÖÔ²$M£º\frac{x^2}{{2{c^2}}}+\frac{y^2}{c^2}=1$£¬ÆäÖÐc£¾0£®
£¨1£©ÈôÍÖÔ²MµÄ½¹µãΪF1¡¢F2£¬ÇÒ$|{{F_1}{F_2}}|=2\sqrt{6}£¬P$ΪMÉÏÒ»µã£¬Çó|PF1|+|PF2|µÄÖµ£»
£¨2£©ÈçͼËùʾ£¬AÊÇÍÖÔ²ÉÏÒ»µã£¬ÇÒAÔÚµÚ¶þÏóÏÞ£¬AÓëB¹ØÓÚÔ­µã¶Ô³Æ£¬CÔÚxÖáÉÏ£¬ÇÒABÓëxÖá´¹Ö±£¬Èô$\overrightarrow{CA}•\overrightarrow{CB}=-4$£¬¡÷ABCµÄÃæ»ýΪ4£®
£¨1£©ÇóÍÖÔ²MµÄ·½³Ì£»
£¨2£©ÈôÖ±ÏßlÓëÍÖÔ²M½»ÓÚP¡¢Q£¬ÇÒËıßÐÎAPCQΪƽÐÐËıßÐΣ¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Ä³ÊÖ»úÅä¼þÉú²úÁ÷Ë®Ïß¹²Óмס¢ÒÒÁ½Ìõ£¬²úÁ¿s£¨µ¥Î»£º¸ö£©Óëʱ¼ät£¨µ¥Î»£ºÌ죩µÄ¹ØÏµÈçͼËùʾ£¬Ôò½Ó½üt0Ììʱ£¬ÏÂÁнáÂÛÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®¼×µÄÈÕÉú²úÁ¿´óÓÚÒÒµÄÈÕÉú²úÁ¿
B£®¼×µÄÈÕÉú²úÁ¿Ð¡ÓÚÒÒµÄÈÕÉú²úÁ¿
C£®¼×µÄÈÕÉú²úÁ¿µÈÓÚÒÒµÄÈÕÉú²úÁ¿
D£®ÎÞ·¨Åж¨¼×µÄÈÕÉú²úÁ¿ÓëÒÒµÄÈÕÉú²úÁ¿µÄ´óС

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÔÚÊýÁÐ{an}ÖУ¬ÒÑÖªa1=2£¬a2=7£¬an+2µÈÓÚ${a_n}•{a_{n+1}}£¨n¡Ê{N^*}£©$µÄ¸öλÊý£¬Ôòa2016µÄÖµÊÇ£¨¡¡¡¡£©
A£®8B£®6C£®4D£®2

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸