精英家教网 > 高中数学 > 题目详情
(2012•安徽模拟)已知各项均为正数的等比数列{an}的前n项和为Sn,a1=3,S3=39.
(1)求数列{an}通项公式;
(2)若在an与an+1之间插入n个数,使得这n+2个数组成一个公差为dn的等差数列,求证:
1
d1
+
1
d2
+
+
1
dn
5
8
分析:(Ⅰ)由a1=3,S3=39,知1+q+q2=13.故q=3,或q=-4,由此能求出an=3n
(Ⅱ)由an=3n,知an+1=3n+1,由题知:an+1=an+(n+1)dn,则dn=
3n
n+1
.由上知:
1
dn
=
n+1
3n
,所以Tn=
1
d1
+
1
d2
+…+
1
dn
=
2
2×3
+
3
32
+…+
n+1
3n
,由此利用错位相减法能够证明
1
d1
+
1
d2
+
+
1
dn
5
8
解答:解:(Ⅰ)∵a1=3,S3=39,∴q≠1,
3(1-q3)
1-q
=39

∴1+q+q2=13.∴q=3,或q=-4(舍),
an=3n.…(6分)
(Ⅱ)∵an=3n,则an+1=3n+1,由题知:
an+1=an+(n+1)dn,则dn=
3n
n+1

由上知:
1
dn
=
n+1
3n

所以Tn=
1
d1
+
1
d2
+…+
1
dn
=
2
2×3
+
3
32
+…+
n+1
3n

1
3
Tn=
2
32
+
3
33
+…+
n+1
3n+1

所以
2
3
Tn=
1
3
+
1
2
(
1
3 2
+
1
3 3
+…+
1
3 n
)
-
n+1
3n+1

=
1
3
+
1
2
×
1
9
[1-(
1
3
)
n-1
]
1-
1
3
-
n+1
3n+1

=
5
12
-
5+2n
3n+1

所以Tn=
5
8
-
5+2n
3n
5
8

1
d1
+
1
d2
+
+
1
dn
5
8
.…(12分)
点评:本题考查数列通项公式的求法,证明数列的前n项和小于定值.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是高考的重点.解题时要认真审题,仔细解答,注意错位相减法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•安徽模拟)在复平面内,复数z=
1+i
i-2
对应的点位于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)定义在R上的奇函数f(x)满足:x≤0时f(x)=ax+b(a>0且a≠1),f(1)=
1
2
,则f(2)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)(理)若变量x,y满足约束条件
x+y-3≤0
x-y+1≥0
y≥1
,则z=|y-2x|的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)下列说法不正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)已知f(x)=2
3
sinx+
sin2x
sinx

(1)求f(x)的最大值,及当取最大值时x的取值集合.
(2)在三角形ABC中,a,b,c分别是角A,B,C所对的边,对定义域内任意x,有f(x)≤f(A),若a=
3
,求
AB
AC
的最大值.

查看答案和解析>>

同步练习册答案