(07年湖南卷文)(13分)
已知双曲线的右焦点为F,过点F的动直线与双曲线相交与A、B两点,点C的坐标是(1,0).
(I)证明为常数;
(Ⅱ)若动点(其中为坐标原点),求点的轨迹方程.
解析:由条件知,设,.
(I)当与轴垂直时,可设点的坐标分别为,,
此时.
当不与轴垂直时,设直线的方程是.
代入,有.
则是上述方程的两个实根,所以,,
于是
.
综上所述,为常数.
(II)解法一:设,则,,
,.由得:
即
于是的中点坐标为.
当不与轴垂直时,,即.
又因为两点在双曲线上,所以,,两式相减得
,即.
将代入上式,化简得.
当与轴垂直时,,求得,也满足上述方程.
所以点的轨迹方程是.
解法二:同解法一得……………………………………①
当不与轴垂直时,由(I) 有.…………………②
.………………………③
由①②③得.…………………………………………………④
.……………………………………………………………………⑤
当时,,由④⑤得,,将其代入⑤有
.整理得.
当时,点的坐标为,满足上述方程.
当与轴垂直时,,求得,也满足上述方程.
故点的轨迹方程是.
科目:高中数学 来源: 题型:
(07年湖南卷文)(13分)
已知函数在区间内各有一个极值点.
(Ⅰ)求的最大值;
(Ⅱ)当时,设函数在点处的切线为,若在点A处穿过的图象(即动点在点A附近沿曲线运动,经过点A时,从的一侧进入另一侧),求函数的表达式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com