精英家教网 > 高中数学 > 题目详情
(理科)已知二元一次不等式组
x+y-5≤0
0≤y≤2
x≥1

(1)在图中画出不等式组表示的平面区域.
(2)求所表示的平面区域的面积
(3)若z=2x+y,求z的取值范围.
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用目标函数的几何意义即可得到结论.
解答: 解:(1)如图所示阴影部分为不等式组表示的平面区域.其中A(1,0),B(5,0),C(3,2),D(1,2),
(2)∵A(1,0),B(5,0),C(3,2),D(1,2),
∴AB=4,CD=2,AD=2,
则阴影部分的面积S=
1
2
(AB+CD)•AD
=
1
2
×(4+2)×2=6

(3)令z=0,得直线2x+y=0作出与直线2x+y=0,平行的一组平行线,
可知当直线过A点时z有最小值,z=2x+y=2×1+0=2,
当直线过B点时z有最小值,z=2x+y=2×5+0=10.
点评:本题主要考查线性规划的应用,利用数形结合结合目标函数的几何意义是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若直线l1:(a-1)x+4y-3=0与l2:(a-2)x-5y+a-3=0互相垂直,则实数a的值为(  )
A、-3或6B、3或-6
C、-3D、3或6

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx-ax,g(x)=ex-ax,其中a为实数,若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的不等式x2-ax+a>0(a∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sin2ωx+6cos2ωx-3(ω>0)在一个周期内的图象如图所示,其中A为图象的最高点,B、C为图象与轴的交点,且△ABC为正三角形.
(Ⅰ)求ω的值;
(Ⅱ)若f(x0)=
6
3
5
,且x0∈(
2
3
8
3
),求f(x0+1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项为Sn,点(n,
Sn
n
),(n∈N*)均在函数y=3x-2的图象上.
(1)求数列{an}的通项公式;
(2)设bn=
3
anan+1
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(a+
1
a
)lnx+
1
x
-x
(1)当a>1时,讨论f(x)在区间(0,1)上的单调性;
(2)当a>0时,求f(x)的极值;.
(3)当a≥3时,曲线y=f(x)上总存在不同两点P(x1,f(x1)),Q(x2,f(x2)),使得曲线y=f(x)在P、Q两点处的切线互相平行,证明:x1+x2
6
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-x,g(x)=lnx.
(1)求函数G(x)=f(x)-g(x)的极值.
(2)若f(x)≥ag(x)恒成立,求实数a的值;
(3)设F(x)=f(x)+mg(x)(m∈R)有两个极值点x1、x2(x1<x2),求实数m的取值范围,并证明F(x2)>-
3+4ln2
16

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+b
2x+1+2
是奇函数;
(1)求实数b的值;
(2)判断并证明函数f(x)的单调性;
(3)若关于x的方程f(x)=m在x∈[0,1]上有解,求实数m的取值范围.

查看答案和解析>>

同步练习册答案