精英家教网 > 高中数学 > 题目详情
设数列{an}的前n项为Sn,点(n,
Sn
n
),(n∈N*)均在函数y=3x-2的图象上.
(1)求数列{an}的通项公式;
(2)设bn=
3
anan+1
,求数列{bn}的前n项和Tn
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由于点(n,
Sn
n
),(n∈N*)均在函数y=3x-2的图象上,可得
Sn
n
=3n-2
,即Sn=3n2-2n.
当n=1时,a1=S1=1;当n≥2时,an=Sn-Sn-1即可得出.
(2)利用“裂项求和”即可得出.
解答: 解:(1)∵点(n,
Sn
n
),(n∈N*)均在函数y=3x-2的图象上,
Sn
n
=3n-2
,即Sn=3n2-2n.
当n=1时,a1=S1=1;
当n≥2时,an=Sn-Sn-1=(3n2-2n)-[3(n-1)2-2(n-1)]=6n-5.
当n=1时,上式也成立,∴an=6n-5,n∈N*
(2)bn=
3
anan+1
=
3
(6n-5)(6n+1)
=
1
2
(
1
6n-5
-
1
6n+1
)

Tn=b1+b2+b3+…+bn
=
1
2
[(
1
1
-
1
7
)+(
1
7
-
1
13
)+(
1
13
-
1
19
)+…+(
1
6n-5
-
1
6n+1
)]

=
1
2
(1-
1
6n+1
)
点评:本题考查了利用“当n=1时,a1=S1;当n≥2时,an=Sn-Sn-1”求数列的通项公式的方法、“裂项求和”的方法,考查了计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(3x)=log2
9x+5
2
,那么f(1)的值为(  )
A、log2
7
B、2
C、1
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(2sin(ωx+
π
3
),1),
n
=(2cosωx,-
3
),(ω>0),函数f(x)=
m
n
的两条相邻对称轴间的距离为
π
2

(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)当x∈[-
π
3
π
6
]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

某企业有两个生产车间,分别位于边长是1km的等边三角形ABC的顶点A、B处(如图),现要在边AC上的D点建一仓库,某工人每天用叉车将生产原料从仓库运往车间,同时将成品运回仓库.已知叉车每天要往返A车间5次,往返B车间20次,设叉车每天往返的总路程为skm.(注:往返一次即先从仓库到车间再由车间返回仓库)
(Ⅰ)按下列要求确定函数关系式:
①设AD长为x,将s表示成x的函数关系式;
②设∠ADB=θ,将s表示成θ的函数关系式.
(Ⅱ)请你选用(Ⅰ)中一个合适的函数关系式,求总路程s的最小值,并指出点D的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)已知二元一次不等式组
x+y-5≤0
0≤y≤2
x≥1

(1)在图中画出不等式组表示的平面区域.
(2)求所表示的平面区域的面积
(3)若z=2x+y,求z的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|ax-3=0},B={x|x2-2x-3=0},且A⊆B,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)在(-∞,0)∪(0,+∞)上有意义,且在(0,+∞)上单调递减,f(3)=0.又g(θ)=cos2θ-2mcosθ+4m,θ∈[0,
π
2
]
.若集合M={m|g(θ)>0},集合N={m|f[g(θ)]<0}
(1)x取何值时,f(x)<0;
(2)求M∩N.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于两个定义域相同的函数f(x),g(x),若存在实数m,n使得h(x)=mf(x)+ng(x),则称函数h(x)是“函数f(x),g(x)的一个线性表达”.
(1)若偶函数h(x)是“函数f(x)=x2+3x,g(x)=3x+4的一个线性表达”,求h(2);
(2)若h(x)=2x2+3x-1是“函数f(x)=x2+ax,g(x)=x+b(a,b∈R,ab≠0)的一个线性表达”,求a+2b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,ABCD是直角梯形,AB⊥BC,AB∥CD,AB=2BC=2CD=2,点E为PA中点.
(Ⅰ)求证:DE∥平面PBC;
(Ⅱ)求证:平面PBC⊥平面PAB;
(Ⅲ)若∠PDA=
π
4
,求四棱锥P-ABCD的体积.

查看答案和解析>>

同步练习册答案