(本小题满分12分)
已知关于x的二次函数.
(I)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数在区间上是增函数的概率;
(II)设点(a,b)是区域内的一点,求函数在区间上是增函数的概率.
(1)所求事件的概率为= ;(2) P=.
【解析】本题主要考查了古典概型,掌握古典概型的计算步骤和计算公式是解答本题的关键,同时考查了分类的思想,属于基础题.
(1)这是一个古典概型问题,我们分别计算出满足条件的基本事件个数,及基本事件的总个数,然后代入古典概型计算公式,即可求解.
(2)根据函数是增函数,得到试验发生包含的事件对应的区域和满足条件的事件对应的区域,做出面积,利用几何概型计算公式得到结果.
(1)∵函数f(x)=ax2-4bx+1的图象的对称轴为直线x=,要使f(x)=ax2-4bx+1在区间[1,+∞)上为增函数,当且仅当a>0且≤1,即2b≤a.(2分)
若a=1,则b=-1;若a=2,则b=-1或1;若a=3,则b=-1或1.
∴事件包含基本事件的个数是1+2+2=5.(5分)
∴所求事件的概率为= (6分)
(2)由(1),知当且仅当2b≤a且a>0时,函数f(x)=ax2-4bx+1在区间[1,+∞)上为增函数,(8分)
依条件可知事件的全部结果所构成的区域为,构成所求事件的区域为三角形部分.由得交点坐标为,(10分)
∴所求事件的概率为P=.(12分)
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com