精英家教网 > 高中数学 > 题目详情
选修4-5:不等式选讲定义min{a,b}=
a,a≤b
b,a>b
,求函数f(x)=min{|x-2|+|2x+1|,-x2+3x+3}的最大值.
根据绝对值的意义,可得|x-2|+|2x+1|=
3x-1    x≥2
x+3     -
1
2
<x<2
-3x+1    x≤-
1
2
…(3分)
①当x≥2时-x2+3x+3-(3x-1)=-x2+4≤0成立,此时|x-2|+|2x+1|>-x2+3x+3,∴f(x)=-x2+3x+3;
②当-
1
2
<x<2时,-x2+3x+3-(x+3)=-x2+2x≤0在(-
1
2
,0)成立,此时f(x)=-x2+3x+3.
-x2+3x+3-(x+3)=-x2+2x≥0在[0,2)成立,此时f(x)=x+3;
③当x≤-
1
2
时,-x2+3x+3-(-3x+1)=-x2+6x+2≤0在(-∞,-
1
2
]成立,此时f(x)=-x2+3x+3;
所以f(x)=
-x2+3x+3      x≤0
x+3        0<x<2
-x2+3x+3     x≥2
,…(6分)
可得函数在(-∞,0),(0,2)上是增函数,在(2,+∞)上是减函数
因此,当x≤0时,f(x)≤f(0)=3;当0<x<2时,f(x)<f(2)=5;当x≥2时,f(x)≤f(2)=5.
综上所述,可得f(x)最大值为5. …(10分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
设x,y,z∈(0,+∞),且x+y+z=1,求
1
x
+
4
y
+
9
z
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【选修4-5:不等式选讲】
求下列不等式的解集
(Ⅰ)|2x-1|-|x+3|>0
(Ⅱ)x+|2x-1|>3.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲:
设正有理数x是
2
的一个近似值,令y=1+
1
1+x

(Ⅰ)若x>
2
,求证:y<
2

(Ⅱ)比较y与x哪一个更接近于
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城模拟)(选修4-5:不等式选讲)
已知a,b,c为正数,且a2+a2+c2=14,试求a+2b+3c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乌鲁木齐一模)选修4-5:不等式选讲
设函数,f(x)=|x-1|+|x-2|.
(I)求证f(x)≥1;
(II)若f(x)=
a2+2
a2+1
成立,求x的取值范围.

查看答案和解析>>

同步练习册答案