【题目】已知抛物线y2=4x的焦点为F,点A、B在抛物线上,且∠AFB=90°,弦AB中点M在准线l上的射影为M1 , 则 的最大值为 .
科目:高中数学 来源: 题型:
【题目】在直角△ABC中,∠ACB=30°,∠B=90°,D为AC中点(左图),将∠ABD沿BD折起,使得AB⊥CD(右图),则二面角A﹣BD﹣C的余弦值为( )
A.﹣
B.
C.﹣
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1 , D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:
(1)平面ADE⊥平面BCC1B1;
(2)直线A1F∥平面ADE.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,将正六边形ABCDEF中的一半图形ABCD绕AD翻折到AB1C1D,使得∠B1AF=60°.G是BF与AD的交点.
(Ⅰ)求证:平面ADEF⊥平面B1FG;
(Ⅱ)求直线AB1与平面ADEF所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱柱ABCD﹣A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.
(Ⅰ)证明B1C1⊥CE;
(Ⅱ)求二面角B1﹣CE﹣C1的正弦值.
(Ⅲ)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为 ,求线段AM的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系 中,椭圆 的中心为坐标原点,左焦点为F1(﹣1,0),离心率.
(1)求椭圆G 的标准方程;
(2)已知直线 与椭圆 交于 两点,直线 与椭圆 交于 两点,且 ,如图所示.
①证明: ;
②求四边形 的面积 的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,直线的倾斜角为且经过点,以原点为极点,以轴正半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系,设曲线的极坐标方程为.
(1)若直线与曲线有公共点,求的取值范围;
(2)设为曲线上任意一点,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com