精英家教网 > 高中数学 > 题目详情
15.已知数列{an}是等比数列,a3=1,a5=4,则公比q等于(  )
A.2B.-2C.$±\frac{1}{2}$D.±2

分析 利用等比数列的通项公式及其性质即可得出.

解答 解:∵a3=1,a5=4,
∴q2=$\frac{{a}_{5}}{{a}_{3}}$=4,
∴q=±2,
故选:D

点评 本题考查了等比数列的通项公式及其性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.设0≤x<2π,且$\sqrt{1-sin2x}$=sinx-cosx,则x的取值范围是$[\frac{π}{4},\frac{5π}{4}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.4个男生,3个女生站成一排.(必须写出算式再算出结果才得分)
(Ⅰ)3个女生必须排在一起,有多少种不同的排法?
(Ⅱ)任何两个女生彼此不相邻,有多少种不同的排法?
(Ⅲ)甲乙二人之间恰好有三个人,有多少种不同的排法?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如表所示.
一次购物量1至4件5至8件9至12件13至16件17件及以上
顾客数(人)x3025y10
结算时间(分钟/人)11.522.53
已知这100位顾客中的一次购物量超过8件的顾客占55%.
(1)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;
(2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过3 钟的概率.(注:将频率视为概率)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.解关于x不等式x2-x-a(a-1)>0(a∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在多面体ABCDE中,ABDE是平行四边形,AB、AC、AD两两垂直.
(Ⅰ)求证:平面ACD⊥平面ECD;
(Ⅱ)若BC=CD=DB=$\sqrt{2}$,求点B到平面ECD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥A-EFCB中,四边形EFCB是梯形,EF∥BC且EF=$\frac{3}{4}$BC,△ABC是边长为2的正三角形,顶点F在AC上射影为点G,且FG=$\sqrt{3}$,CF=$\frac{{\sqrt{21}}}{2}$,BF=$\frac{5}{2}$.
(1)证明:平面FGB⊥平面ABC;
(2)求三棱锥E-GBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,已知正方形ABCD和矩形ACEF所在平面相互垂直,$AB=\sqrt{2},AF=1$,M在线段EF上.
(1)若M是线段EF的中点,证明:平面AMD⊥平面BDF;
(2)命题“若M为线段EF的中点,则平面ADM⊥平面BDF”的逆命题是否成立?若成立,给出证明,否则请举出反例.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,平行四边形PABC中,∠PAC=∠ABC=90°,PA=AB=2$\sqrt{3}$,AC=4,现把△PAC沿AC折起,使PA与平面ABC成60°角,设此时P在平面ABC上的投影为O点(O与B在AC的同侧).

(Ⅰ)求证:OB∥平面PAC;
(Ⅱ)试问:线段PA上是否在存在一点M,使得二面角M-BC-A的余弦值为$\frac{5\sqrt{37}}{37}$?若存在,指出M的位置,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案