精英家教网 > 高中数学 > 题目详情
10.解关于x不等式x2-x-a(a-1)>0(a∈R).

分析 通过a与$\frac{1}{2}$大小讨论,然后求解不等式的解集即可.

解答 解:当$a=\frac{1}{2}$时,不等式化为${(x-\frac{1}{2})^2}>0$解得:$x≠\frac{1}{2}$,
当$a>\frac{1}{2}$时,a>1-a原不等式解得:x<1-a或x>a,
当$a<\frac{1}{2}$时,a<1-a原不等式解得:x<a或x>1-a,
综上所述:当$a=\frac{1}{2}$时,不等式的解集为$\{x|x≠\frac{1}{2}\}$,
当$a>\frac{1}{2}$时,不等式的解集为{x|x<1-a或x>a},
当$a<\frac{1}{2}$时不等式的解集为{x|x<a或x>1-a}.

点评 本题考查含参数的二次不等式的解集的求法,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为(  )
A.$20+\sqrt{5}π$B.$24+\sqrt{5}π$C.$20+(\sqrt{5}-1)π$D.$24+(\sqrt{5}-1)π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数$f(x)=\left\{\begin{array}{l}-2x-{x^2},x≤0\\|{lgx}|,x>0\end{array}\right.$,若a<b<c<d,且f(a)=f(b)=f(c)=f(d),则a+b+c+2d的取值范围是(  )
A.$({3,\frac{201}{10}})$B.$({1,\frac{181}{10}})$C.$({2\sqrt{2},+∞})$D.$({2\sqrt{2}-2,+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.抛物线y=$\frac{1}{5}$x2在点A (2,$\frac{4}{5}$) 处的切线的斜率为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若$A({3,\frac{π}{3}})$,$B({3,\frac{7π}{6}})$,则△AOB的面积为(  )
A.$\frac{{\sqrt{3}}}{4}$B.3C.$\frac{9}{4}$D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知数列{an}是等比数列,a3=1,a5=4,则公比q等于(  )
A.2B.-2C.$±\frac{1}{2}$D.±2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在抛物线y=x2与直线y=2围成的封闭图形内任取一点A,O为坐标原点,则直线OA被该封闭图形解得的线段长小于$\sqrt{2}$的概率是(  )
A.$\frac{{\sqrt{3}}}{15}$B.$\frac{{\sqrt{3}}}{16}$C.$\frac{{\sqrt{2}}}{16}$D.$\frac{{\sqrt{2}}}{14}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.甲、乙两位同学参加数学竞赛培训,培训期间共参加了10次模拟考试,根据考试成绩,得到如图所示的茎叶图.
(1)求甲学生的平均成绩及方差;
(2)若在这10次模拟考试中,乙学生的平均成绩为79.6分,求a>b的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=ln(1+x)-$\frac{x}{1+ax}$(a>0)
(Ⅰ)求函数f(x)在点(0,f(0))处的切线方程;
(Ⅱ)讨论函数f(x)在区间[0,1]上的单调性;
(Ⅲ)求证:($\frac{2017}{2016}$)2016.4<e<($\frac{2017}{2016}$)2016.5

查看答案和解析>>

同步练习册答案