精英家教网 > 高中数学 > 题目详情
19.甲、乙两位同学参加数学竞赛培训,培训期间共参加了10次模拟考试,根据考试成绩,得到如图所示的茎叶图.
(1)求甲学生的平均成绩及方差;
(2)若在这10次模拟考试中,乙学生的平均成绩为79.6分,求a>b的概率.

分析 (1)由茎叶图能求出甲学生的平均成绩和方差.
(2)记事件A为“a>b“,由于乙学生的平均成绩为79.6,解得a+b=10,由a,b∈[0,9],且a≥1,b≥1,利用列举法能求出a>b的概率.

解答 解:(1)由茎叶图得甲学生的平均成绩为:
$\overline{x}$=$\frac{1}{10}$(61+73+76+78+80+82+89+85+92+94)=81,
方差为:
S2=$\frac{1}{10}$[(-20)2+(-8)2+(-5)2+(-3)2+(-1)2+12+82+42+112+132]=87.
(2)记事件A为“a>b“,由于乙学生的平均成绩为79.6,
解得a+b=10,
∵a,b∈[0,9],且a≥1,b≥1,
∴a,b的取值为:
(1,9),(2,8),(3,7),(4,6),(5,5),(6,4),(7,3),(8,2),(9,1),
共9种情况,
其中满足a>b的有:(6,4),(7,3),(8,2),(9,1),共4种情况,
∴a>b的概率p=$\frac{4}{9}$.

点评 本题考查概率的求法,涉及到概率、茎叶图、列举法等知识点,考查推理论证能力、运算求解能力、数据处理能力,考查化归与转化思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.如图所示的程序框图,当输入x的值为3时,则其输出的结果是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.解关于x不等式x2-x-a(a-1)>0(a∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥A-EFCB中,四边形EFCB是梯形,EF∥BC且EF=$\frac{3}{4}$BC,△ABC是边长为2的正三角形,顶点F在AC上射影为点G,且FG=$\sqrt{3}$,CF=$\frac{{\sqrt{21}}}{2}$,BF=$\frac{5}{2}$.
(1)证明:平面FGB⊥平面ABC;
(2)求三棱锥E-GBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在如图所示的几何体中,EA⊥平面ABC,DB∥EA,AC⊥BC,且BC=BD=3,AE=2,AC=3$\sqrt{2}$,AF=2FB
(1)求证:CF⊥EF;
(2)求二面角D-CE-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,已知正方形ABCD和矩形ACEF所在平面相互垂直,$AB=\sqrt{2},AF=1$,M在线段EF上.
(1)若M是线段EF的中点,证明:平面AMD⊥平面BDF;
(2)命题“若M为线段EF的中点,则平面ADM⊥平面BDF”的逆命题是否成立?若成立,给出证明,否则请举出反例.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}的通项为an=$\left\{{\begin{array}{l}{n+\frac{15}{n},n≤5}\\{alnn-\frac{1}{4},n>5}\end{array}}$,若{an}的最小值为$\frac{31}{4}$,则实数a的取值范围是[$\frac{8}{ln6}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.过双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的右顶点作x轴的垂线,与C的一条渐近线相交于点A.若以C的右焦点为圆心、半径为4的圆经过A,O两点(O为坐标原点),则双曲线C的方程为(  )
A.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{7}$-$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{8}$=1D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知a、b∈R,(a+bi)2=3+4i(i是虚数单位),则a2+b2=5,ab=2.

查看答案和解析>>

同步练习册答案