精英家教网 > 高中数学 > 题目详情
9.如图所示的程序框图,当输入x的值为3时,则其输出的结果是1.

分析 当输入x的值为3时,x=3-3=0,由x=0≤0成立,能求出结果.

解答 解:当输入x的值为3时,
第一次循环时,x=3-3=0,
∵x=0≤0成立,
∴y=0.50=1.
输出y=1.
故答案为:1.

点评 本题主要考查了当型循环结构,循环结构有两种形式:当型循环结构和直到型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.有这样一段演绎推理:“指数函数y=ax(a>0且a≠1)是增函数,而y=($\frac{1}{2}$)x是指数函数,所以y=($\frac{1}{2}$)x是增函数”.上面推理显然是错误的,是因为(  )
A.大前提错导致结论错B.小前提错导致结论错
C.推理形式错导致结论错D.大前提和小前提错导致结论错

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为(  )
A.$20+\sqrt{5}π$B.$24+\sqrt{5}π$C.$20+(\sqrt{5}-1)π$D.$24+(\sqrt{5}-1)π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知复数z=x+(x-a)i,若对任意实数x∈(1,2),恒有|z|>|$\overline{z}$+i|,则实数a的取值范围为(  )
A.(-∞,$\frac{1}{2}$]B.(-∞,$\frac{1}{2}$)C.[$\frac{3}{2}$,+∞)D.($\frac{3}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.天干地支纪年法,源于中国.中国自古便有十天干与十二地支.
十天干:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;
十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.
天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,…,以此类推.排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,之后地支回到“子”重新开始,即“丙子”,…,以此类推.
已知2017年为丁酉年,那么到改革开放100年时,即2078年为戊戌年.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:
总计
爱好402060
不爱好203050
总计6050110
其中${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
附表
P(K2≥k)0.0500.0100.001
k3,8416.63510.828
问能否有99%以上的把握认为爱好该项运动与性别有关?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数$f(x)=\left\{\begin{array}{l}-2x-{x^2},x≤0\\|{lgx}|,x>0\end{array}\right.$,若a<b<c<d,且f(a)=f(b)=f(c)=f(d),则a+b+c+2d的取值范围是(  )
A.$({3,\frac{201}{10}})$B.$({1,\frac{181}{10}})$C.$({2\sqrt{2},+∞})$D.$({2\sqrt{2}-2,+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.抛物线y=$\frac{1}{5}$x2在点A (2,$\frac{4}{5}$) 处的切线的斜率为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.甲、乙两位同学参加数学竞赛培训,培训期间共参加了10次模拟考试,根据考试成绩,得到如图所示的茎叶图.
(1)求甲学生的平均成绩及方差;
(2)若在这10次模拟考试中,乙学生的平均成绩为79.6分,求a>b的概率.

查看答案和解析>>

同步练习册答案