精英家教网 > 高中数学 > 题目详情
4.有这样一段演绎推理:“指数函数y=ax(a>0且a≠1)是增函数,而y=($\frac{1}{2}$)x是指数函数,所以y=($\frac{1}{2}$)x是增函数”.上面推理显然是错误的,是因为(  )
A.大前提错导致结论错B.小前提错导致结论错
C.推理形式错导致结论错D.大前提和小前提错导致结论错

分析 指数函数y=ax(a>0且a≠1)是R上的增函数,这个说法是错误的,要根据所给的底数的取值不同分类说出函数的不同的单调性,即大前提是错误的.

解答 解:指数函数y=ax(a>0且a≠1)是R上的增函数,
这个说法是错误的,要根据所给的底数的取值不同分类说出函数的不同的单调性,
大前提是错误的,
∴得到的结论是错误的,
故选A.

点评 本题考查演绎推理的基本方法,解题的关键是理解演绎推理的三段论原理,在大前提和小前提中,若有一个说法是错误的,则得到的结论就是错误的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,已知F1、F2是椭圆G:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦点,直线l:y=k(x+1)经过左焦点F1,且与椭圆G交于A、B两点,△ABF2的周长为$4\sqrt{3}$.
(Ⅰ)求椭圆G的标准方程;
(Ⅱ)是否存在直线l,使得△ABF2为等腰直角三角形?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知等差数列{an}的前n项和为Sn,且S21=42,若记bn=2${\;}^{{a}_{11}^{2}-{a}_{9}-{a}_{13}}$,则数列{bn}(  )
A.是等差数列但不是等比数列B.是等比数列但不是等差数列
C.既是等差数列又是等比数列D.既不是等差数列又不是等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\left\{\begin{array}{l}{-\frac{3x+2}{x+1},x∈(-1,0]}\\{x,x∈(0,1]}\end{array}\right.$且g(x)=mx+m,若g(x)=f(x)在(-1,1]内有且仅有两个不同的根,则实数m的取值范围是(  )
A.(-$\frac{9}{4}$,-2]∪(0,$\frac{1}{2}$]B.(-$\frac{11}{4}$,-2]∪(0,$\frac{1}{2}$]C.(-$\frac{9}{4}$,-2]∪(0,$\frac{2}{3}$]D.(-$\frac{11}{4}$,-2]∪(0,$\frac{2}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.△ABC的外接圆圆心为P,若点P满足$\overrightarrow{AP}$=$\frac{2}{5}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),则cos∠BAC=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)已知数列{an}是等差数列,且${a_1}+{a_5}+{a_9}=\frac{π}{4}$,求$sin({{a_4}+{a_6}+\frac{2017π}{2}})$的值;
(2)已知数列{an}是等差数列,且满足${a_2}^2={a_1}{a_5},{a_1}+{a_2}+{a_5}=26$,求数列{an}的 通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\vec a=(1,cos2x),\vec b=(sin2x,-\sqrt{3})$,函数f(x)=$\overrightarrow a•\overrightarrow b$.
(1)求函数f(x)的单调增区间;
(2)若$f({\frac{θ}{2}+\frac{2π}{3}})=\frac{6}{5}$,求cos2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若集合A={x|-3<x<2},B={x|0<x<3},则A∩B=(  )
A.{x|-3<x<0}B.{x|-3<x<3}C.{x|0<x<2}D.{x|0<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图所示的程序框图,当输入x的值为3时,则其输出的结果是1.

查看答案和解析>>

同步练习册答案