精英家教网 > 高中数学 > 题目详情
8.若集合A={x|-3<x<2},B={x|0<x<3},则A∩B=(  )
A.{x|-3<x<0}B.{x|-3<x<3}C.{x|0<x<2}D.{x|0<x<3}

分析 找出A与B解集的公共部分,即可确定出两集合的交集.

解答 解:∵集合A={x|-3<x<2},B={x|0<x<3},
∴A∩B={x|0<x<2}.
故选:C

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.函数y=lg(cosx-$\frac{\sqrt{3}}{2}$)的定义域为(  )
A.(-$\frac{π}{6}$,$\frac{π}{6}$)B.(kπ-$\frac{π}{6}$,kπ+$\frac{π}{6}$)(k∈π)
C.(2kπ-$\frac{π}{6}$,2kπ+$\frac{π}{6}$)(k∈Z)D.R

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.有这样一段演绎推理:“指数函数y=ax(a>0且a≠1)是增函数,而y=($\frac{1}{2}$)x是指数函数,所以y=($\frac{1}{2}$)x是增函数”.上面推理显然是错误的,是因为(  )
A.大前提错导致结论错B.小前提错导致结论错
C.推理形式错导致结论错D.大前提和小前提错导致结论错

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)=x2+2xf'(2)+lnx,则f'(2)等于(  )
A.-2B.2C.-$\frac{9}{2}$D.$\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.计算
(1)$\frac{1-2i}{3+4i}$  
(2)$\frac{{2-\sqrt{3}i}}{{2+\sqrt{3}i}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,四边形ABCD是边长为1的正方形,ED⊥平面ABCD,FB∥ED,且ED=FB=1,G为BC的中点.
(1)求此几何体的体积;
(2)在线段AF上是否存在点P,使得GP⊥平面AEF?若存在,求线段AP的长,若不存在,请说明理由;
(3)求二面角E-AF-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为(  )
A.$20+\sqrt{5}π$B.$24+\sqrt{5}π$C.$20+(\sqrt{5}-1)π$D.$24+(\sqrt{5}-1)π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知复数z=x+(x-a)i,若对任意实数x∈(1,2),恒有|z|>|$\overline{z}$+i|,则实数a的取值范围为(  )
A.(-∞,$\frac{1}{2}$]B.(-∞,$\frac{1}{2}$)C.[$\frac{3}{2}$,+∞)D.($\frac{3}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.抛物线y=$\frac{1}{5}$x2在点A (2,$\frac{4}{5}$) 处的切线的斜率为$\frac{4}{5}$.

查看答案和解析>>

同步练习册答案