精英家教网 > 高中数学 > 题目详情
19.△ABC的外接圆圆心为P,若点P满足$\overrightarrow{AP}$=$\frac{2}{5}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),则cos∠BAC=$\frac{1}{4}$.

分析 由题意,设BC中点M,得到$\overrightarrow{AB}$+$\overrightarrow{AC}$=2$\overrightarrow{AM}$,结合已知,得到∠BPM=∠BAC.

解答 解:设BC边中点为M,则$\overrightarrow{AB}$+$\overrightarrow{AC}$=2$\overrightarrow{AM}$,由题设$\overrightarrow{AP}$=$\frac{2}{5}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),
∴5$\overrightarrow{AP}$=4$\overrightarrow{AM}$
∴A、P、M共线,且AP=4PM,而∠BPM=2∠BAM,
∴∠BPM=∠BAC,
即cos∠BAC=$\frac{PM}{PB}$=$\frac{1}{4}$.
故答案为:$\frac{1}{4}$

点评 本题考查了向量共线性质的运用;关键是明确A,P与BC中点三点共线,得到∠BPM=∠BAC.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知实数x,y满足$\left\{\begin{array}{l}x-y+2≥0\\ x+y≥0\\ 5x-y-6≤0.\end{array}\right.$若z=x+my的最小值是-5,则实数m取值集合是(  )
A.{-4,6}B.$\left\{{-\frac{7}{4},6}\right\}$C.$\left\{{-4,-\frac{7}{4}}\right\}$D.$\left\{{-4,-\frac{7}{4},6}\right\}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图是一个几何体的三视图,则这个几何体的表面积为11+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知正数x,y满足x+2y=3,当xy取得最大值时,过点P(x,y)引圆:(x-$\frac{1}{2}$)2+(y+$\frac{1}{4}$)2=$\frac{1}{2}$的切线,则此切线段的长度为$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合A={x∈N|(x+1)(2-x)≥0},B{y|y=2x,x∈R},则A∩B=(  )
A.{x|0<x≤2}B.{0,1,2}C.{1,2}D.{1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.有这样一段演绎推理:“指数函数y=ax(a>0且a≠1)是增函数,而y=($\frac{1}{2}$)x是指数函数,所以y=($\frac{1}{2}$)x是增函数”.上面推理显然是错误的,是因为(  )
A.大前提错导致结论错B.小前提错导致结论错
C.推理形式错导致结论错D.大前提和小前提错导致结论错

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}满足a1=2,a2=3,an+2=3an+1-2an(n∈N*);
(1)求a3,a4,a5
(2)用归纳法猜想它的一个通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.计算
(1)$\frac{1-2i}{3+4i}$  
(2)$\frac{{2-\sqrt{3}i}}{{2+\sqrt{3}i}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.天干地支纪年法,源于中国.中国自古便有十天干与十二地支.
十天干:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;
十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.
天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,…,以此类推.排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,之后地支回到“子”重新开始,即“丙子”,…,以此类推.
已知2017年为丁酉年,那么到改革开放100年时,即2078年为戊戌年.

查看答案和解析>>

同步练习册答案