精英家教网 > 高中数学 > 题目详情
7.已知正数x,y满足x+2y=3,当xy取得最大值时,过点P(x,y)引圆:(x-$\frac{1}{2}$)2+(y+$\frac{1}{4}$)2=$\frac{1}{2}$的切线,则此切线段的长度为$\frac{\sqrt{6}}{2}$.

分析 利用基本不等式的性质可得P的坐标,再利用直线与圆相切的性质、勾股定理即可得出.

解答 解:正数x,y满足x+2y=3,∴3≥2$\sqrt{x•2y}$,可得:xy≤$\frac{9}{8}$,当且仅当x=2y=$\frac{3}{2}$时取等号.
当xy取得最大值时,点P$(\frac{3}{2},\frac{3}{4})$.
则切线段的长度为$\sqrt{(\frac{3}{2}-\frac{1}{2})^{2}+(\frac{3}{4}+\frac{1}{4})^{2}-\frac{1}{2}}$=$\frac{\sqrt{6}}{2}$.
故答案为:$\frac{\sqrt{6}}{2}$.

点评 本题考查了基本不等式的性质可得P的坐标,再利用直线与圆相切的性质、勾股定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设a,b∈(0,+∞),则“a>b”是“logab<1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=sinxcosx+$\sqrt{3}$cos(π-x)cosx
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在区间[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知等差数列{an}的前n项和为Sn,且S21=42,若记bn=2${\;}^{{a}_{11}^{2}-{a}_{9}-{a}_{13}}$,则数列{bn}(  )
A.是等差数列但不是等比数列B.是等比数列但不是等差数列
C.既是等差数列又是等比数列D.既不是等差数列又不是等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.将函数f(x)=sin(ωx+$\frac{π}{6}$)的图象向右平移$\frac{π}{4}$个单位后与g(x)=cos(ωx+$\frac{π}{6}$)的图象重合,则当|ω|最小时,f(π)的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\left\{\begin{array}{l}{-\frac{3x+2}{x+1},x∈(-1,0]}\\{x,x∈(0,1]}\end{array}\right.$且g(x)=mx+m,若g(x)=f(x)在(-1,1]内有且仅有两个不同的根,则实数m的取值范围是(  )
A.(-$\frac{9}{4}$,-2]∪(0,$\frac{1}{2}$]B.(-$\frac{11}{4}$,-2]∪(0,$\frac{1}{2}$]C.(-$\frac{9}{4}$,-2]∪(0,$\frac{2}{3}$]D.(-$\frac{11}{4}$,-2]∪(0,$\frac{2}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.△ABC的外接圆圆心为P,若点P满足$\overrightarrow{AP}$=$\frac{2}{5}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),则cos∠BAC=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\vec a=(1,cos2x),\vec b=(sin2x,-\sqrt{3})$,函数f(x)=$\overrightarrow a•\overrightarrow b$.
(1)求函数f(x)的单调增区间;
(2)若$f({\frac{θ}{2}+\frac{2π}{3}})=\frac{6}{5}$,求cos2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在区间[0,1]上单调递减,则将$f({-\frac{5}{2}})$,f(7),f(4)从小到大顺序排列为$f(7)<f({-\frac{5}{2}})<f(4)$.

查看答案和解析>>

同步练习册答案