精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=$\left\{\begin{array}{l}{-\frac{3x+2}{x+1},x∈(-1,0]}\\{x,x∈(0,1]}\end{array}\right.$且g(x)=mx+m,若g(x)=f(x)在(-1,1]内有且仅有两个不同的根,则实数m的取值范围是(  )
A.(-$\frac{9}{4}$,-2]∪(0,$\frac{1}{2}$]B.(-$\frac{11}{4}$,-2]∪(0,$\frac{1}{2}$]C.(-$\frac{9}{4}$,-2]∪(0,$\frac{2}{3}$]D.(-$\frac{11}{4}$,-2]∪(0,$\frac{2}{3}$]

分析 由g(x)=f(x)-mx+m=0,即f(x)=m(x+1),作出函数f(x)和y=h(x)=m(x+1)的图象,利用数形结合即可得结论.

解答 解:g(x)=f(x)-mx+m=0,即f(x)=m(x+1),
分别作出函数f(x)和y=h(x)=m(x+1)的图象如图:
由图象可知f(1)=1,h(x)表示过定点A(-1,0)的直线,
当h(x)过(1,1)时,m=$\frac{1}{2}$,此时两个函数有两个交点,此时满足条件的m的取值范围是$0<m≤\frac{1}{2}$,
当h(x)过(0,-2)时,h(0,-2),解得m=-2,此时两个函数有两个交点,
当h(x)与f(x)相切时,两个函数只有一个交点,此时$-\frac{3x+2}{x+1}$=m(x+1),即m(x+1)2+3x+2=0,
当m=0时,$x=-\frac{2}{3}$,只有一解,当m≠0时,由△=9+4m=0得$m=-\frac{9}{4}$,此时直线和f(x)相切,
∴要使函数有两个零点,则$-\frac{9}{4}<m≤-2$,或$0<m≤\frac{1}{2}$.
∴实数m的取值范围是:(-$\frac{9}{4}$,-2]∪(0,$\frac{1}{2}$].
故选:A.

点评 本题主要考查函数零点的应用,利用数形结合是解决此类问题的基本方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.在△ABC中,角B为钝角,则sinB>sin(A+B).(填“>”或“<”或“=”)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=lg(cosx-$\frac{\sqrt{3}}{2}$)的定义域为(  )
A.(-$\frac{π}{6}$,$\frac{π}{6}$)B.(kπ-$\frac{π}{6}$,kπ+$\frac{π}{6}$)(k∈π)
C.(2kπ-$\frac{π}{6}$,2kπ+$\frac{π}{6}$)(k∈Z)D.R

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设复数z满足z(1+i)=2,i为虚数单位,则复数z的虚部是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知正数x,y满足x+2y=3,当xy取得最大值时,过点P(x,y)引圆:(x-$\frac{1}{2}$)2+(y+$\frac{1}{4}$)2=$\frac{1}{2}$的切线,则此切线段的长度为$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知F1,F2为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线右支的一个交点为P,PF1与双曲线相交于Q,且|PQ|=2|QF1|,则双曲线的离心率为(  )
A.2B.$\frac{\sqrt{5}}{2}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.有这样一段演绎推理:“指数函数y=ax(a>0且a≠1)是增函数,而y=($\frac{1}{2}$)x是指数函数,所以y=($\frac{1}{2}$)x是增函数”.上面推理显然是错误的,是因为(  )
A.大前提错导致结论错B.小前提错导致结论错
C.推理形式错导致结论错D.大前提和小前提错导致结论错

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)=x2+2xf'(2)+lnx,则f'(2)等于(  )
A.-2B.2C.-$\frac{9}{2}$D.$\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知复数z=x+(x-a)i,若对任意实数x∈(1,2),恒有|z|>|$\overline{z}$+i|,则实数a的取值范围为(  )
A.(-∞,$\frac{1}{2}$]B.(-∞,$\frac{1}{2}$)C.[$\frac{3}{2}$,+∞)D.($\frac{3}{2}$,+∞)

查看答案和解析>>

同步练习册答案