精英家教网 > 高中数学 > 题目详情
20.设复数z满足z(1+i)=2,i为虚数单位,则复数z的虚部是-1.

分析 把已知等式变形,再由复数代数形式的乘除运算化简z得答案.

解答 解:由z(1+i)=2,
得$z=\frac{2}{1+i}=\frac{2(1-i)}{(1+i)(1-i)}=1-i$.
则复数z的虚部是:-1.
故答案为:-1.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知定义在R上的奇函数y=f(x)的图象关于直线x=1对称,当-1≤x<0时,f(x)=-log${\;}_{\frac{1}{2}}$(-x),则方程f(x)-$\frac{1}{2}$=0在(0,6)内的所有根之和为12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列函数中为奇函数的是(  )
A.y=x2+2xB.y=ln|x|C.y=($\frac{1}{3}$)xD.y=xcosx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设0<a<1,且m=loga(a2+1),n=loga(a+1),p=loga(2a),则m,n,p的大小关系为(  )
A.n>m>pB.p>m>nC.m>n>pD.m>p>n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知等差数列{an}的前n项和为Sn,且S21=42,若记bn=2${\;}^{{a}_{11}^{2}-{a}_{9}-{a}_{13}}$,则数列{bn}(  )
A.是等差数列但不是等比数列B.是等比数列但不是等差数列
C.既是等差数列又是等比数列D.既不是等差数列又不是等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.给出下列四个命题:
①已知x∈R,则“x>1”是“x>2”的充分不必要条件;
②命题“若x≥1,则$\frac{1}{x}$≤1”的否命题是假命题;
③已知x∈(0,π),则y=sinx+$\frac{2}{sinx}$的最小值为2$\sqrt{2}$;
④设$\overrightarrow{a}$,$\overrightarrow{b}$是两个非零向量,则“$\overrightarrow{a}$•$\overrightarrow{b}$<0”是“$\overrightarrow{a}$,$\overrightarrow{b}$夹角为钝角”的充分不必要条件.
其中正确命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\left\{\begin{array}{l}{-\frac{3x+2}{x+1},x∈(-1,0]}\\{x,x∈(0,1]}\end{array}\right.$且g(x)=mx+m,若g(x)=f(x)在(-1,1]内有且仅有两个不同的根,则实数m的取值范围是(  )
A.(-$\frac{9}{4}$,-2]∪(0,$\frac{1}{2}$]B.(-$\frac{11}{4}$,-2]∪(0,$\frac{1}{2}$]C.(-$\frac{9}{4}$,-2]∪(0,$\frac{2}{3}$]D.(-$\frac{11}{4}$,-2]∪(0,$\frac{2}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)已知数列{an}是等差数列,且${a_1}+{a_5}+{a_9}=\frac{π}{4}$,求$sin({{a_4}+{a_6}+\frac{2017π}{2}})$的值;
(2)已知数列{an}是等差数列,且满足${a_2}^2={a_1}{a_5},{a_1}+{a_2}+{a_5}=26$,求数列{an}的 通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设0≤x<2π,且$\sqrt{1-sin2x}$=sinx-cosx,则x的取值范围是$[\frac{π}{4},\frac{5π}{4}]$.

查看答案和解析>>

同步练习册答案