精英家教网 > 高中数学 > 题目详情
8.设0<a<1,且m=loga(a2+1),n=loga(a+1),p=loga(2a),则m,n,p的大小关系为(  )
A.n>m>pB.p>m>nC.m>n>pD.m>p>n

分析 当0<a<1时,比较a2+1与a+1的大小,然后比较a2+1与2a的大小,利用对数函数单调性可判断获解.

解答 解:当0<a<1时,有均值不等式可知a2+1>2a,再由以a为底对数函数在定义域上单调递减,从而可知m<p
又∵(a2+1)-(a+1)=a2-a恒小于0,即a2+1<a+1,再由以a为底对数函数在定义域上单调递减,从而可知m>n
综上∴p>m>n.
故选B.

点评 本题主要考查对数函数的单调性,以及基本不等式,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.若x,y满足约束条件$\left\{\begin{array}{l}x+y-5≤0\\ 2x-y-1≥0\\ x-2y+1≤0\end{array}\right.$,等差数列{an}满足a1=x,a5=y,其前n项为Sn,则S5-S2的最大值为$\frac{35}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow{AB}$=(1,$\sqrt{3}$),$\overrightarrow{AC}$=(-1,$\sqrt{3}$),则∠BAC=(  )
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若抛物线y2=8x上的点P到焦点的距离为6,则P到y轴的距离是4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=lg(cosx-$\frac{\sqrt{3}}{2}$)的定义域为(  )
A.(-$\frac{π}{6}$,$\frac{π}{6}$)B.(kπ-$\frac{π}{6}$,kπ+$\frac{π}{6}$)(k∈π)
C.(2kπ-$\frac{π}{6}$,2kπ+$\frac{π}{6}$)(k∈Z)D.R

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在如图所示的计算1+5+9+…+2013的程序框图中,判断框内应填入(  )
A.i≤504B.i≤2009C.i≤2013D.i<2013

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设复数z满足z(1+i)=2,i为虚数单位,则复数z的虚部是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知F1,F2为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线右支的一个交点为P,PF1与双曲线相交于Q,且|PQ|=2|QF1|,则双曲线的离心率为(  )
A.2B.$\frac{\sqrt{5}}{2}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,四边形ABCD是边长为1的正方形,ED⊥平面ABCD,FB∥ED,且ED=FB=1,G为BC的中点.
(1)求此几何体的体积;
(2)在线段AF上是否存在点P,使得GP⊥平面AEF?若存在,求线段AP的长,若不存在,请说明理由;
(3)求二面角E-AF-B的余弦值.

查看答案和解析>>

同步练习册答案