精英家教网 > 高中数学 > 题目详情
17.已知F1,F2为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线右支的一个交点为P,PF1与双曲线相交于Q,且|PQ|=2|QF1|,则双曲线的离心率为(  )
A.2B.$\frac{\sqrt{5}}{2}$C.$\sqrt{3}$D.$\sqrt{5}$

分析 根据|PQ|=2|QF1|,以及圆的性质,结合直角三角形的性质,建立三角形的边角关系,利用双曲线的定义得到关于a,c的方程进行求解即可.

解答 解:∵点P是以F1F2为直径的圆与C右支的一个交点,
∴即∠F1PF2为直角,
∴则设|QF1|=m,|PQ|=2m,
则|F1F2|=2c,
则|PF2|=$\sqrt{4{c}^{2}-9{m}^{2}}$,|QF2|=$\sqrt{4{c}^{2}-5{m}^{2}}$,
则|PF1|-|PF2|=3m-$\sqrt{4{c}^{2}-9{m}^{2}}$=2a,①
|QF2|-|QF1|=$\sqrt{4{c}^{2}-5{m}^{2}}$-m=2a,②,
则3m-$\sqrt{4{c}^{2}-9{m}^{2}}$=$\sqrt{4{c}^{2}-5{m}^{2}}$-m=2a,
即4m-$\sqrt{4{c}^{2}-9{m}^{2}}$=$\sqrt{4{c}^{2}-5{m}^{2}}$,
平方整理得45m2=16c2
则m2=$\frac{16}{45}$c2,代回②得$\sqrt{4{c}^{2}-5×\frac{16{c}^{2}}{45}}$-$\frac{4\sqrt{5}}{15}$c=2a,
即c=$\sqrt{5}$a
双曲线的离心率e=$\frac{c}{a}$=$\sqrt{5}$,
故选D.

点评 本题主要考查双曲线离心率的计算,根据直角三角形的边角关系建立方程组,求出a,c的关系是解决本题的关键.综合性较强,运算量较大,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.由于研究性学习的需要,中学生李华持续收集了手机“微信运动”团队中特定20名成员每天行走的步数,其中某一天的数据记录如下:
5860  6520  7326  6798  7325
8430  8215  7453  7446  6754
7638  6834  6460  6830  9860
8753  9450  9860  7290  7850
对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:
步数分组统计表(设步数为x)
组别步数分组频数
A5500≤x<65002
B6500≤x<750010
C7500≤x<8500m
D8500≤x<95002
E9500≤x<10500n
(Ⅰ)写出m,n的值,若该“微信运动”团队共有120人,请估计该团队中一天行走步数不少于7500步的人数;
(Ⅱ)记C组步数数据的平均数与方差分别为v1,$s_1^2$,E组步数数据的平均数与方差分别为v2,$s_2^2$,试分别比较v1与v2,$s_1^2$与$s_2^2$的大小;(只需写出结论)
(Ⅲ)从上述A,E两个组别的步数数据中任取2个数据,求这2个数据步数差的绝对值大于3000步的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设0<a<1,且m=loga(a2+1),n=loga(a+1),p=loga(2a),则m,n,p的大小关系为(  )
A.n>m>pB.p>m>nC.m>n>pD.m>p>n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.给出下列四个命题:
①已知x∈R,则“x>1”是“x>2”的充分不必要条件;
②命题“若x≥1,则$\frac{1}{x}$≤1”的否命题是假命题;
③已知x∈(0,π),则y=sinx+$\frac{2}{sinx}$的最小值为2$\sqrt{2}$;
④设$\overrightarrow{a}$,$\overrightarrow{b}$是两个非零向量,则“$\overrightarrow{a}$•$\overrightarrow{b}$<0”是“$\overrightarrow{a}$,$\overrightarrow{b}$夹角为钝角”的充分不必要条件.
其中正确命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\left\{\begin{array}{l}{-\frac{3x+2}{x+1},x∈(-1,0]}\\{x,x∈(0,1]}\end{array}\right.$且g(x)=mx+m,若g(x)=f(x)在(-1,1]内有且仅有两个不同的根,则实数m的取值范围是(  )
A.(-$\frac{9}{4}$,-2]∪(0,$\frac{1}{2}$]B.(-$\frac{11}{4}$,-2]∪(0,$\frac{1}{2}$]C.(-$\frac{9}{4}$,-2]∪(0,$\frac{2}{3}$]D.(-$\frac{11}{4}$,-2]∪(0,$\frac{2}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数f(x)=$\frac{4}{3}$x3+bx2+2x-5有3个单调区间,则实数b的取值范围(-∞,-2$\sqrt{2}$)∪(2$\sqrt{2}$,+∞),.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)已知数列{an}是等差数列,且${a_1}+{a_5}+{a_9}=\frac{π}{4}$,求$sin({{a_4}+{a_6}+\frac{2017π}{2}})$的值;
(2)已知数列{an}是等差数列,且满足${a_2}^2={a_1}{a_5},{a_1}+{a_2}+{a_5}=26$,求数列{an}的 通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,x≥0)的部分图象如图所示,则f(1)+f(2)+f(3)+…+f(11)的值等于(  )
A.2B.$2+\sqrt{2}$C.$2+2\sqrt{2}$D.$-2-\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在一个口袋中装有大小相同的5个白球和3个黑球,从中摸出3个球,至少摸到2个黑球的概率为(  )
A.$\frac{9}{28}$B.$\frac{3}{8}$C.$\frac{3}{7}$D.$\frac{2}{7}$

查看答案和解析>>

同步练习册答案