精英家教网 > 高中数学 > 题目详情
4.(1)已知数列{an}是等差数列,且${a_1}+{a_5}+{a_9}=\frac{π}{4}$,求$sin({{a_4}+{a_6}+\frac{2017π}{2}})$的值;
(2)已知数列{an}是等差数列,且满足${a_2}^2={a_1}{a_5},{a_1}+{a_2}+{a_5}=26$,求数列{an}的 通项公式.

分析 (1)利用等差数列通项公式求出${a}_{5}=\frac{π}{12}$,从而求出$sin({{a_4}+{a_6}+\frac{2017π}{2}})$=sin($2{a}_{5}+\frac{π}{2}$)=cos$\frac{π}{6}$,由此能求出结果.
(2)由等差数列通项公式得到d2=2a1d,从而求出d=0或d=2a1,由此能求出结果.

解答 解:(1)∵数列{an}是等差数列,且${a_1}+{a_5}+{a_9}=\frac{π}{4}$,
∴$3{a}_{5}=\frac{π}{4}$,解得${a}_{5}=\frac{π}{12}$,
∴$sin({{a_4}+{a_6}+\frac{2017π}{2}})$
=sin($2{a}_{5}+\frac{π}{2}$)
=sin($\frac{π}{6}+\frac{π}{2}$)=cos$\frac{π}{6}$=$\frac{\sqrt{3}}{2}$.
(2)∵${a_2}^2={a_1}{a_5}∴{({{a_1}+d})^2}={a_1}({{a_1}+4d})$,
∴d2=2a1d∴d=0或d=2a1…..(7分)
当$d=0时,由{a_1}+{a_2}+{a_5}=26得{a_1}=\frac{26}{3}$,
此时,${a_n}=\frac{26}{3}$….(8分)
当d=2a1时,由a1+a2+a5=26得13a1=26,故a1=2,d=4,
此时,an=2+4(n-1)=4n-2
综上可知:${a_n}=\frac{26}{3}$或an=2+4(n-1)=4n-2.

点评 本题考查正弦值的求法,考查等差数列的通项公式的求法,考查等差数列通项公式、前n项和公式、诱导公式、正弦函数等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow{AB}$=(1,$\sqrt{3}$),$\overrightarrow{AC}$=(-1,$\sqrt{3}$),则∠BAC=(  )
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设复数z满足z(1+i)=2,i为虚数单位,则复数z的虚部是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知F1,F2为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线右支的一个交点为P,PF1与双曲线相交于Q,且|PQ|=2|QF1|,则双曲线的离心率为(  )
A.2B.$\frac{\sqrt{5}}{2}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.有这样一段演绎推理:“指数函数y=ax(a>0且a≠1)是增函数,而y=($\frac{1}{2}$)x是指数函数,所以y=($\frac{1}{2}$)x是增函数”.上面推理显然是错误的,是因为(  )
A.大前提错导致结论错B.小前提错导致结论错
C.推理形式错导致结论错D.大前提和小前提错导致结论错

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知复数z满足(z-1)i=i+1,则z在复平面内所对应的点在第(  )象限.
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)=x2+2xf'(2)+lnx,则f'(2)等于(  )
A.-2B.2C.-$\frac{9}{2}$D.$\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,四边形ABCD是边长为1的正方形,ED⊥平面ABCD,FB∥ED,且ED=FB=1,G为BC的中点.
(1)求此几何体的体积;
(2)在线段AF上是否存在点P,使得GP⊥平面AEF?若存在,求线段AP的长,若不存在,请说明理由;
(3)求二面角E-AF-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:
总计
爱好402060
不爱好203050
总计6050110
其中${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
附表
P(K2≥k)0.0500.0100.001
k3,8416.63510.828
问能否有99%以上的把握认为爱好该项运动与性别有关?

查看答案和解析>>

同步练习册答案