分析 (1)利用等差数列通项公式求出${a}_{5}=\frac{π}{12}$,从而求出$sin({{a_4}+{a_6}+\frac{2017π}{2}})$=sin($2{a}_{5}+\frac{π}{2}$)=cos$\frac{π}{6}$,由此能求出结果.
(2)由等差数列通项公式得到d2=2a1d,从而求出d=0或d=2a1,由此能求出结果.
解答 解:(1)∵数列{an}是等差数列,且${a_1}+{a_5}+{a_9}=\frac{π}{4}$,
∴$3{a}_{5}=\frac{π}{4}$,解得${a}_{5}=\frac{π}{12}$,
∴$sin({{a_4}+{a_6}+\frac{2017π}{2}})$
=sin($2{a}_{5}+\frac{π}{2}$)
=sin($\frac{π}{6}+\frac{π}{2}$)=cos$\frac{π}{6}$=$\frac{\sqrt{3}}{2}$.
(2)∵${a_2}^2={a_1}{a_5}∴{({{a_1}+d})^2}={a_1}({{a_1}+4d})$,
∴d2=2a1d∴d=0或d=2a1…..(7分)
当$d=0时,由{a_1}+{a_2}+{a_5}=26得{a_1}=\frac{26}{3}$,
此时,${a_n}=\frac{26}{3}$….(8分)
当d=2a1时,由a1+a2+a5=26得13a1=26,故a1=2,d=4,
此时,an=2+4(n-1)=4n-2
综上可知:${a_n}=\frac{26}{3}$或an=2+4(n-1)=4n-2.
点评 本题考查正弦值的求法,考查等差数列的通项公式的求法,考查等差数列通项公式、前n项和公式、诱导公式、正弦函数等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 30° | B. | 45° | C. | 60° | D. | 120° |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{\sqrt{5}}{2}$ | C. | $\sqrt{3}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 大前提错导致结论错 | B. | 小前提错导致结论错 | ||
| C. | 推理形式错导致结论错 | D. | 大前提和小前提错导致结论错 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | 2 | C. | -$\frac{9}{2}$ | D. | $\frac{9}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 男 | 女 | 总计 | |
| 爱好 | 40 | 20 | 60 |
| 不爱好 | 20 | 30 | 50 |
| 总计 | 60 | 50 | 110 |
| P(K2≥k) | 0.050 | 0.010 | 0.001 |
| k | 3,841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com