精英家教网 > 高中数学 > 题目详情
6.已知数列{an}满足a1=2,a2=3,an+2=3an+1-2an(n∈N*);
(1)求a3,a4,a5
(2)用归纳法猜想它的一个通项公式.

分析 (1)根据数列的递推公式,代值计算即可,
(2)根据a1=2=20+1,a2=3=21+1,a3=5=22+1,a4=9=23+1,a5=17=24+1,即可猜想出它的一个通项公式

解答 解:(1)∵an+2=3an+1-2an,a1=2,a2=3,
∴a3=3a2-2a1=3×3-2×2=5,
a4=3a3-2a2=3×5-2×3=9,
a5=3a4-2a3=3×9-2×5=17;
(2)由a1=2=20+1,a2=3=21+1,a3=5=22+1,a4=9=23+1,a5=17=24+1,
于是可以猜想它的一个通项公式an=2n-1+1.

点评 本题考查了数列的递推公式和归纳推理的问题,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影.由区域$\left\{\begin{array}{l}{x+2y≥0}\\{x-y≤0}\\{x-2y+2≥0}\end{array}\right.$中的点在直线x-2y-2=0上的投影构成的线段记为AB,则|AB|=(  )
A.$\frac{\sqrt{5}}{2}$B.$\frac{3\sqrt{5}}{2}$C.2$\sqrt{2}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.将函数f(x)=sin(ωx+$\frac{π}{6}$)的图象向右平移$\frac{π}{4}$个单位后与g(x)=cos(ωx+$\frac{π}{6}$)的图象重合,则当|ω|最小时,f(π)的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.△ABC的外接圆圆心为P,若点P满足$\overrightarrow{AP}$=$\frac{2}{5}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),则cos∠BAC=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.式子$\frac{2sin6°-cos24°}{sin24°}$的值是$-\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\vec a=(1,cos2x),\vec b=(sin2x,-\sqrt{3})$,函数f(x)=$\overrightarrow a•\overrightarrow b$.
(1)求函数f(x)的单调增区间;
(2)若$f({\frac{θ}{2}+\frac{2π}{3}})=\frac{6}{5}$,求cos2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)={cos^2}x+\sqrt{3}sinxcosx+1$.
(1)若x∈R,求f(x)的最小正周期和最值;
(2)若0<x<π,求这个函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知过点M(1,-1)的直线l与椭圆$\frac{x^2}{4}+\frac{y^2}{3}=1$相交于A,B两点,若点M是AB的中点,则直线l的方程为3x-4y-7=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知$tan({π-α})=\frac{3}{4},α∈({\frac{π}{2},π})$,则cosα=(  )
A.$-\frac{4}{5}$B.$\frac{4}{5}$C.$-\frac{3}{5}$D.$\frac{3}{5}$

查看答案和解析>>

同步练习册答案