精英家教网 > 高中数学 > 题目详情
1.式子$\frac{2sin6°-cos24°}{sin24°}$的值是$-\sqrt{3}$.

分析 利用和与差的公式化简2sin6°=2sin(30°-24°)展开即可得答案.

解答 解:由$\frac{2sin6°-cos24°}{sin24°}$=$\frac{2sin(30°-24°)-cos24°}{sin24°}$=$\frac{2sin30°cos24°-2cos30°sin24°-cos24°}{sin24°}$=$-2cos30°=-\sqrt{3}$.
故答案为:$-\sqrt{3}$.

点评 本题主要考察了和与差的公式化简的灵活应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.如图,点P在平面上从点A出发,依次按照点B、C、D、E、F、A的顺序运动,其轨迹为两段半径为1的圆弧和四条长度为1,且与坐标轴平行的线段.设从运动开始射线OA旋转到射线OP时的旋转角为α.若点P的纵坐标y关于α的函数为f(α),则函数f(α)的图象(  )
A.关于直线$α=\frac{π}{4}$成轴对称,关于坐标原点成中心对称
B.关于直线$α=\frac{3π}{4}$成轴对称,没有对称中心
C.没有对称轴,关于点(π,0)成中心对称
D.既没有对称轴,也没有对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知菱形ABCD的边长为2,∠BAD=120°,点E,F分别在边BC,DC上,BE=EC,DF=λDC,若$\overrightarrow{AE}$•$\overrightarrow{AF}$=1,则λ的值为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{5}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合A={x∈N|(x+1)(2-x)≥0},B{y|y=2x,x∈R},则A∩B=(  )
A.{x|0<x≤2}B.{0,1,2}C.{1,2}D.{1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.甲、乙、丙三位同学上课后独立完成一份自我检测题,甲优秀的概率为$\frac{4}{5}$,乙优秀的概率为$\frac{2}{5}$,丙优秀的概率为$\frac{2}{3}$,则三人中至少有两人优秀的概率为(  )
A.$\frac{1}{25}$B.$\frac{16}{25}$C.$\frac{24}{25}$D.$\frac{52}{75}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}满足a1=2,a2=3,an+2=3an+1-2an(n∈N*);
(1)求a3,a4,a5
(2)用归纳法猜想它的一个通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设M、N分别是直线11:kx+y-k-4=0与直线l2:x-ky+2=0所过的两个定点,Q为线段MN的中点,P为直线11与直线l2的交点,则|PQ|=(  )
A.$\frac{5}{2}$B.2C.$\frac{3}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)是R上的奇函数,对于?x∈(0,+∞),都有f(x+2)=-f(x)且x∈(0,1]时f(x)=2x+1,则f(-2014)+f(2015)的值为(  )
A.0B.1C.2D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.(1+$\sqrt{x}}$)6(1+$\sqrt{x}$)4的展开式中x的系数是(  )
A.-4B.21C.45D.4

查看答案和解析>>

同步练习册答案