精英家教网 > 高中数学 > 题目详情
13.设M、N分别是直线11:kx+y-k-4=0与直线l2:x-ky+2=0所过的两个定点,Q为线段MN的中点,P为直线11与直线l2的交点,则|PQ|=(  )
A.$\frac{5}{2}$B.2C.$\frac{3}{2}$D.1

分析 法一:求出M(1,4),N(-2,0),从而Q(-$\frac{1}{2}$,2),再求出P($\frac{{k}^{2}+4k-2}{{k}^{2}+1}$,$\frac{3k+4}{{k}^{2}+1}$),利用两点间距离公式能求出|PQ|的值.
法二:求出M(1,4),N(-2,0),从而Q(-$\frac{1}{2}$,2)∵P为直线11与直线l2的交点,再由直线11:kx+y-k-4=0与直线l2:x-ky+2=0垂直,
直角三角形斜边的中线为斜边的一半,能求出|PQ|.

解答 解法一:M、N分别是直线11:kx+y-k-4=0与直线l2:x-ky+2=0所过的两个定点,
直线11:kx+y-k-4=0整理为(x-1)k+(y-4)=0,
由$\left\{\begin{array}{l}{x-1=0}\\{y-4=0}\end{array}\right.$,得M(1,4),
直线l2:x-ky+2=0中,由$\left\{\begin{array}{l}{x+2=0}\\{y=0}\end{array}\right.$,得N(-2,0),
∵Q为线段MN的中点,∴Q(-$\frac{1}{2}$,2),
∵P为直线11与直线l2的交点,
∴联立$\left\{\begin{array}{l}{kx+y-k-4=0}\\{x-ky+2=0}\end{array}\right.$,得P($\frac{{k}^{2}+4k-2}{{k}^{2}+1}$,$\frac{3k+4}{{k}^{2}+1}$),
∴|PQ|=$\sqrt{(\frac{{k}^{2}+4k-2}{{k}^{2}+1}+\frac{1}{2})^{2}+(\frac{3k+4}{{k}^{2}+1}-2)^{2}}$=$\frac{5}{2}$.
解法二:M、N分别是直线11:kx+y-k-4=0与直线l2:x-ky+2=0所过的两个定点,
直线11:kx+y-k-4=0整理为(x-1)k+(y-4)=0,
由$\left\{\begin{array}{l}{x-1=0}\\{y-4=0}\end{array}\right.$,得M(1,4),
直线l2:x-ky+2=0中,由$\left\{\begin{array}{l}{x+2=0}\\{y=0}\end{array}\right.$,得N(-2,0),
∵Q为线段MN的中点,∴Q(-$\frac{1}{2}$,2),
∵P为直线11与直线l2的交点,
直线11:kx+y-k-4=0与直线l2:x-ky+2=0垂直,
直角三角形斜边的中线为斜边的一半,
∴|PQ|=$\frac{1}{2}$|MN|=$\frac{1}{2}\sqrt{(1+2)^{2}+(4-0)^{2}}$=$\frac{5}{2}$.
故选:A.

点评 本题考查两点间距离的求法,考查直线方程、中点坐标公式、两点间距离公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点(-1,$\frac{3}{2}$),其离心率e=$\frac{1}{2}$.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设动直线l:y=kx+m与椭圆C相切,切点为T,且l与直线x=-4相交于点S.
试问:在x轴上是否存在一定点,使得以ST为直径的圆恒过该定点?若存在,求出该点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如果执行如图的程序框图,输入x=-2,h=2.5,那么输出的各个数的和等于(  )
A.1B.1.5C.2.5D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.式子$\frac{2sin6°-cos24°}{sin24°}$的值是$-\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.直线y=kx+1(k∈R)与椭圆$\frac{x^2}{5}+\frac{y^2}{m}=1$恒有两个公共点,则m的取值范围为(1,5)∪(5,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)={cos^2}x+\sqrt{3}sinxcosx+1$.
(1)若x∈R,求f(x)的最小正周期和最值;
(2)若0<x<π,求这个函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知z=$\frac{(1-i)^{2}}{1+i}$,则z的共轭复数的虚部为(  )
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.椭圆x2+4y2=16的离心率为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数$f(x)=\frac{1}{3}{x^3}-{x^2}+ax-5$在[-1,2]上不单调,则实数a的取值范围是(  )
A.[-3,1)B.(-3,0)C.(-3,1)D.(-3,1]

查看答案和解析>>

同步练习册答案