精英家教网 > 高中数学 > 题目详情
9.如果执行如图的程序框图,输入x=-2,h=2.5,那么输出的各个数的和等于(  )
A.1B.1.5C.2.5D.3

分析 结合框图,写出前几次循环得到结果,直到x的值大于等于2,退出循环,将各步的y值加起来即为输出的各个数的和.

解答 解:输入x=-2,h=2.5,
第1步:判断x=-2<0成立,执行y=0,输出y,判断-2≥2不成立,执行x=-2+2.5=0.5;
第2步:判断x=0.5<0不成立,再判断0.5<1成立,执行y=0.5,输出y,判断0.5≥2不成立,执行x=0.5+2.5=3;
第3步:判断x=3<0不成立,再判断3<1不成立,执行y=1,输出y,判断3≥2成立,算法结束,退出循环.
输出各数和为:0+0.5+1=1.5.
故选:B.

点评 本题考查解决程序框图中的循环结构时,常采用写出前几次循环得到的结果,从中找到规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知数列{an}满足:点(n,an)在直线2x-y+1=0上,若使a1、a4、am构成等比数列,则m=13.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某高中学校为了解学生体质情况,从高一和高二两个年级分别随机抽取了40名男同学进行“引体向上”项目测试.样本的测试成绩均在0至30个之间,按照[0,5),[5,10),[10,15),[15,20),[20,25),[25,30]的分组分别作出频率分布直方图.记样本中高一年级的“引体向上”成绩的方差为s12,高二年级的“引体向上”成绩的方差为s22

(Ⅰ)已知该学校高二年级男同学有500人,估计该学校高二年级男同学引体向上成绩不少于10个的人数;
(Ⅱ)从样本中高一年级的成绩不小于20个男同学中随机抽取2人,求至少有1人成绩在[25,30]中的概率.
(Ⅲ)比较s12与s22的大小(只需写出结果).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知菱形ABCD的边长为2,∠BAD=120°,点E,F分别在边BC,DC上,BE=EC,DF=λDC,若$\overrightarrow{AE}$•$\overrightarrow{AF}$=1,则λ的值为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{5}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}是等差数列,其前n项和为Sn,数列{bn}是公比大于0的等比数列,且b1=-2a1=2,a3+b2=-1.S3+2b3=7.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)令Cn=$\left\{\begin{array}{l}{2,}&{n为奇数}\\{\frac{-2{a}_{n}}{{b}_{n}},}&{n为偶数}\end{array}\right.$,求数列{Cn}的前2n项和T2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合A={x∈N|(x+1)(2-x)≥0},B{y|y=2x,x∈R},则A∩B=(  )
A.{x|0<x≤2}B.{0,1,2}C.{1,2}D.{1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.甲、乙、丙三位同学上课后独立完成一份自我检测题,甲优秀的概率为$\frac{4}{5}$,乙优秀的概率为$\frac{2}{5}$,丙优秀的概率为$\frac{2}{3}$,则三人中至少有两人优秀的概率为(  )
A.$\frac{1}{25}$B.$\frac{16}{25}$C.$\frac{24}{25}$D.$\frac{52}{75}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设M、N分别是直线11:kx+y-k-4=0与直线l2:x-ky+2=0所过的两个定点,Q为线段MN的中点,P为直线11与直线l2的交点,则|PQ|=(  )
A.$\frac{5}{2}$B.2C.$\frac{3}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.有6名学生,其中有3名会唱歌,2名会跳舞,1名既会唱歌又会跳舞,现从中选出2名会唱歌的,1名会跳舞的,去参加文艺演出,求所有不同的选法种数为(  )
A.18B.15C.16D.25

查看答案和解析>>

同步练习册答案