精英家教网 > 高中数学 > 题目详情
19.已知数列{an}满足:点(n,an)在直线2x-y+1=0上,若使a1、a4、am构成等比数列,则m=13.

分析 由题意可得an=2n+1,再根据a1、a4、am构成等比数列,即可求出m的值.

解答 解:点(n,an)在直线2x-y+1=0上,
∴an=2n+1,
∴a1=3,a4=9,am=2m+1,
∵a1、a4、am构成等比数列,
∴92=3(2m+1),
解得m=13,
故答案为:13.

点评 本题考查了等差数列和等比数列的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.${(1+\sqrt{x})^{10}}$的展开式中x4的系数是45.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{\frac{1}{4}x+1,x≤1}\\{lnx,x>1}\end{array}\right.$,则方程f(x)=ax恰有两个不同的实数根时,实数a的取值范围是(  )
A.(0,$\frac{1}{e}$)B.[$\frac{1}{4}$,$\frac{1}{e}$)C.(0,$\frac{1}{4}$]D.($\frac{1}{4}$,e)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列各区间中,是函数f(x)=2cos2x的一个单调递增区间的为(  )
A.(0,$\frac{π}{2}$)B.($\frac{π}{2}$,π)C.(-$\frac{π}{4}$,$\frac{π}{4}$)D.($\frac{π}{4}$,$\frac{3π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设集合A={x|x(x+1)≤0},集合B={x|2x>1},则集合A∪B等于(  )
A.{x|x≥0}B.{x|x≥-1}C.{x|x>0}D.{x|x>-1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=4sin$\frac{ω}{2}xcos({\frac{ω}{2}x-\frac{π}{3}})-\sqrt{3}$(ω>0).
(Ⅰ)若ω=3,求f(x)在区间$[{\frac{5π}{9},\frac{8π}{9}}]$上的最小值;
(Ⅱ)若函数f(x)的图象如图所示,求ω的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的两条渐近线相互垂直,那么双曲线的离心率为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点(-1,$\frac{3}{2}$),其离心率e=$\frac{1}{2}$.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设动直线l:y=kx+m与椭圆C相切,切点为T,且l与直线x=-4相交于点S.
试问:在x轴上是否存在一定点,使得以ST为直径的圆恒过该定点?若存在,求出该点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如果执行如图的程序框图,输入x=-2,h=2.5,那么输出的各个数的和等于(  )
A.1B.1.5C.2.5D.3

查看答案和解析>>

同步练习册答案