精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=$\left\{\begin{array}{l}{\frac{1}{4}x+1,x≤1}\\{lnx,x>1}\end{array}\right.$,则方程f(x)=ax恰有两个不同的实数根时,实数a的取值范围是(  )
A.(0,$\frac{1}{e}$)B.[$\frac{1}{4}$,$\frac{1}{e}$)C.(0,$\frac{1}{4}$]D.($\frac{1}{4}$,e)

分析 通过方程f(x)=ax恰有两个不同实数根,转化为y=f(x)与y=ax有2个交点,又a表示直线y=ax的斜率,求出a的取值范围.

解答 解:∵方程f(x)=ax恰有两个不同实数根,
∴y=f(x)与y=ax有2个交点,
又∵a表示直线y=ax的斜率,
∴y′=$\frac{1}{x}$,
设切点为(x0,y0),k=$\frac{1}{{x}_{0}}$,
∴切线方程为y-y0=$\frac{1}{{x}_{0}}$(x-x0),
而切线过原点,∴y0=1,x0=e,k=$\frac{1}{e}$,
∴直线l1的斜率为$\frac{1}{e}$,
又∵直线l2与y=$\frac{1}{4}$x+1平行,
∴直线l2的斜率为$\frac{1}{4}$,
∴实数a的取值范围是[$\frac{1}{4}$,$\frac{1}{e}$).
故选:B.

点评 本题考查了函数的图象与性质的应用问题,考查函数与方程的关系,是易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.独立性检验中,假设H0:变量X与变量Y没有关系,则在H0成立的情况下,P(K2≥6.635)≈0.010表示的意义是(  )
A.变量X与变量Y有关系的概率为1%
B.变量X与变量Y有关系的概率为99.9%
C.变量X与变量Y没有关系的概率为99%
D.变量X与变量Y有关系的概率为99%

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若x,y满足约束条件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$,则$\frac{y-1}{x}$的取值范围为(  )
A.[0,$\frac{1}{2}$]B.[$\frac{1}{2}$,1]C.[0,2]D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某班级50名学生的考试分数x分布在区间[50,100)内,设考试分数x的分布频率是f(x),且$f(x)=\left\{\begin{array}{l}\frac{n}{10}-0.4,10n≤x<10({n+1}),n=5,6,7\\-\frac{n}{5}+b,10n≤x<10({n+1}),n=8,9.\end{array}\right.$
(1)求b的值;
(2)并估计班级的考试平均分数;
(3)考试成绩采用“5分制”,规定:考试分数在[50,60)内的成绩记为1分,考试分数在[60,70)内的成绩记为2分,考试分数在[70,80)内的成绩记为3分,考试分数在[80,90)内的成绩记为4分,考试分数在[90,100)内的成绩记为5分,在50名学生中用分层抽样的方法,从成绩为1分,2分,3分的学生中随机抽取6人,再从这6人中抽出2人,记这2人的成绩之和为4的概率(将频率视为概率).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow{a}$=(1,m),$\overrightarrow{b}$=(2,n).
(1)若m=3,n=-1,且$\overrightarrow{a}$⊥($\overrightarrow{a}$+λ$\overrightarrow{b}$),求实数λ的值;
(2)若|$\overrightarrow{a}$+$\overrightarrow{b}$|=5,求$\overrightarrow{a}$•$\overrightarrow{b}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.与复数z的实部相等,虚部互为相反数的复数叫做z的共轭复数,并记作$\overline z$,若z=i(3-2i)(其中i为复数单位),则$\overline z$=(  )
A.3-2iB.3+2iC.2+3iD.2-3i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{1}{2}{x^2}$+acosx,g(x)是f(x)的导函数.
(1)若f(x)在$(\frac{π}{2},f(\frac{π}{2}))$处的切线方程为y=$\frac{π+2}{2}x-\frac{{{π^2}+4π}}{8}$,求a的值;
(2)若a≥0且f(x)在x=0时取得最小值,求a的取值范围;
(3)在(1)的条件下,当x>0时,$\sqrt{\frac{{{g^'}(x)}}{2}}+\frac{3}{8}{x^2}>{e^{\frac{x-1}{2}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}满足:点(n,an)在直线2x-y+1=0上,若使a1、a4、am构成等比数列,则m=13.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某高中学校为了解学生体质情况,从高一和高二两个年级分别随机抽取了40名男同学进行“引体向上”项目测试.样本的测试成绩均在0至30个之间,按照[0,5),[5,10),[10,15),[15,20),[20,25),[25,30]的分组分别作出频率分布直方图.记样本中高一年级的“引体向上”成绩的方差为s12,高二年级的“引体向上”成绩的方差为s22

(Ⅰ)已知该学校高二年级男同学有500人,估计该学校高二年级男同学引体向上成绩不少于10个的人数;
(Ⅱ)从样本中高一年级的成绩不小于20个男同学中随机抽取2人,求至少有1人成绩在[25,30]中的概率.
(Ⅲ)比较s12与s22的大小(只需写出结果).

查看答案和解析>>

同步练习册答案