精英家教网 > 高中数学 > 题目详情
15.与复数z的实部相等,虚部互为相反数的复数叫做z的共轭复数,并记作$\overline z$,若z=i(3-2i)(其中i为复数单位),则$\overline z$=(  )
A.3-2iB.3+2iC.2+3iD.2-3i

分析 利用复数代数形式的乘除运算化简z得答案.

解答 解:由z=i(3-2i)=2+3i,
得$\overline{z}=2-3i$.
故选:D.

点评 本题考查了复数代数形式的乘除运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.设正实数x,y,z满足x2-3xy+4y2-z=0,则当$\frac{z}{xy}$取得最小值时,x+2y-z的最大值为(  )
A.1B.$\frac{9}{8}$C.2D.$\frac{9}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合A={x|0<4-x<2},B={x|3x-1≤9},则A∩B=(  )
A.(2,3)B.(2,4)C.(2,3]D.[2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若正实数x,y满足x2+2xy-1=0,则2x+y的最小值为$\sqrt{3}$ .

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{\frac{1}{4}x+1,x≤1}\\{lnx,x>1}\end{array}\right.$,则方程f(x)=ax恰有两个不同的实数根时,实数a的取值范围是(  )
A.(0,$\frac{1}{e}$)B.[$\frac{1}{4}$,$\frac{1}{e}$)C.(0,$\frac{1}{4}$]D.($\frac{1}{4}$,e)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.几年来,网上购物风靡,快递业迅猛发展,某市的快递业务主要由两家快递公司承接,即圆通公司与申通公司:“快递员”的工资是“底薪+送件提成”:这两家公司对“快递员”的日工资方案为:圆通公司规定快递员每天底薪为70元,每送件一次提成1元;申通公司规定快递员每天底薪为120元,每日前83件没有提成,超过83件部分每件提成10元,假设同一公司的快递员每天送件数相同,现从这两家公司各随机抽取一名快递员并记录其100天的送件数,得到如下条形图:
(1)求申通公司的快递员一日工资y(单位:元)与送件数n的函数关系;
(2)若将频率视为概率,回答下列问题:
①记圆通公司的“快递员”日工资为X(单位:元),求X的分布列和数学期望;
②小王想到这两家公司中的一家应聘“快递员”的工作,如果仅从日收入的角度考虑,请你利用所学过的统计学知识为他作出选择,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列各区间中,是函数f(x)=2cos2x的一个单调递增区间的为(  )
A.(0,$\frac{π}{2}$)B.($\frac{π}{2}$,π)C.(-$\frac{π}{4}$,$\frac{π}{4}$)D.($\frac{π}{4}$,$\frac{3π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=4sin$\frac{ω}{2}xcos({\frac{ω}{2}x-\frac{π}{3}})-\sqrt{3}$(ω>0).
(Ⅰ)若ω=3,求f(x)在区间$[{\frac{5π}{9},\frac{8π}{9}}]$上的最小值;
(Ⅱ)若函数f(x)的图象如图所示,求ω的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若$\frac{ai}{2-i}$=$\frac{1-2i}{5}$(i为虚数单位),则实数a的值为(  )
A.1B.-1C.±1D.2

查看答案和解析>>

同步练习册答案