精英家教网 > 高中数学 > 题目详情
14.已知集合A={x∈N|(x+1)(2-x)≥0},B{y|y=2x,x∈R},则A∩B=(  )
A.{x|0<x≤2}B.{0,1,2}C.{1,2}D.{1}

分析 求出A,B中不等式的解集确定出A,B,找出A与B的交集即可.

解答 解:A={x∈N|(x+1)(2-x)≥0}={x∈N|-1≤x≤2}={0,1,2},
由{y|y=2x,x∈R}=(0,+∞),
∴A∩B={1,2},
故选:C.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=4sin$\frac{ω}{2}xcos({\frac{ω}{2}x-\frac{π}{3}})-\sqrt{3}$(ω>0).
(Ⅰ)若ω=3,求f(x)在区间$[{\frac{5π}{9},\frac{8π}{9}}]$上的最小值;
(Ⅱ)若函数f(x)的图象如图所示,求ω的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若$\frac{ai}{2-i}$=$\frac{1-2i}{5}$(i为虚数单位),则实数a的值为(  )
A.1B.-1C.±1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.将函数f(x)=sin(ωx+$\frac{π}{6}$)的图象向右平移$\frac{π}{4}$个单位后与g(x)=cos(ωx+$\frac{π}{6}$)的图象重合,则当|ω|最小时,f(π)的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如果执行如图的程序框图,输入x=-2,h=2.5,那么输出的各个数的和等于(  )
A.1B.1.5C.2.5D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.△ABC的外接圆圆心为P,若点P满足$\overrightarrow{AP}$=$\frac{2}{5}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),则cos∠BAC=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.式子$\frac{2sin6°-cos24°}{sin24°}$的值是$-\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)={cos^2}x+\sqrt{3}sinxcosx+1$.
(1)若x∈R,求f(x)的最小正周期和最值;
(2)若0<x<π,求这个函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.某次数学考试的第一大题由10道四选一的选择题构成,要求考生从A,B,C,D中选出其中一项作为答案,每题选择正确得5分,选择错误不得分.以下是甲、乙、丙、丁四位考生的答案及甲、乙、丙三人的得分结果:
题1题2题3题4题5题6题7题8题9题10得分
CBDDACDCAD35
CBCDBCABDC35
CADDADABAC40
CADDBCABAC
据此可以推算考生丁的得分是40.

查看答案和解析>>

同步练习册答案