精英家教网 > 高中数学 > 题目详情
10.如图是一个几何体的三视图,则这个几何体的表面积为11+2$\sqrt{2}$.

分析 由几何体的三视图得出该几何体是几何体是长方体与三棱柱的组合体,结合图中数据求出组合体的表面积即可.

解答 解:由几何体的三视图可得:
该几何体是长方体与三棱柱的组合体,
该组合体的表面积为:S=2×1+2×1+2×2+2×$\frac{1}{2}$×(1+2)×1+2×$\sqrt{{1}^{2}+{1}^{2}}$
=11+2$\sqrt{2}$
故答案为:11+2$\sqrt{2}$.

点评 本题考查了几何体三视图的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.几年来,网上购物风靡,快递业迅猛发展,某市的快递业务主要由两家快递公司承接,即圆通公司与申通公司:“快递员”的工资是“底薪+送件提成”:这两家公司对“快递员”的日工资方案为:圆通公司规定快递员每天底薪为70元,每送件一次提成1元;申通公司规定快递员每天底薪为120元,每日前83件没有提成,超过83件部分每件提成10元,假设同一公司的快递员每天送件数相同,现从这两家公司各随机抽取一名快递员并记录其100天的送件数,得到如下条形图:
(1)求申通公司的快递员一日工资y(单位:元)与送件数n的函数关系;
(2)若将频率视为概率,回答下列问题:
①记圆通公司的“快递员”日工资为X(单位:元),求X的分布列和数学期望;
②小王想到这两家公司中的一家应聘“快递员”的工作,如果仅从日收入的角度考虑,请你利用所学过的统计学知识为他作出选择,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影.由区域$\left\{\begin{array}{l}{x+2y≥0}\\{x-y≤0}\\{x-2y+2≥0}\end{array}\right.$中的点在直线x-2y-2=0上的投影构成的线段记为AB,则|AB|=(  )
A.$\frac{\sqrt{5}}{2}$B.$\frac{3\sqrt{5}}{2}$C.2$\sqrt{2}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=sinxcosx+$\sqrt{3}$cos(π-x)cosx
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在区间[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若$\frac{ai}{2-i}$=$\frac{1-2i}{5}$(i为虚数单位),则实数a的值为(  )
A.1B.-1C.±1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知等差数列{an}的前n项和为Sn,且S21=42,若记bn=2${\;}^{{a}_{11}^{2}-{a}_{9}-{a}_{13}}$,则数列{bn}(  )
A.是等差数列但不是等比数列B.是等比数列但不是等差数列
C.既是等差数列又是等比数列D.既不是等差数列又不是等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.将函数f(x)=sin(ωx+$\frac{π}{6}$)的图象向右平移$\frac{π}{4}$个单位后与g(x)=cos(ωx+$\frac{π}{6}$)的图象重合,则当|ω|最小时,f(π)的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.△ABC的外接圆圆心为P,若点P满足$\overrightarrow{AP}$=$\frac{2}{5}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),则cos∠BAC=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知过点M(1,-1)的直线l与椭圆$\frac{x^2}{4}+\frac{y^2}{3}=1$相交于A,B两点,若点M是AB的中点,则直线l的方程为3x-4y-7=0.

查看答案和解析>>

同步练习册答案